Moment-angle manifolds corresponding to three-dimensional simplicial spheres, chordality and connected sums of products of spheres (2024)

Victoria OganisianDepartment of Mathematics and Mechanics, MoscowState University, Russia;
National Research University Higher School of Economics, Moscow, Russia
potchtovy_jashik@mail.ru
andTaras PanovDepartment of Mathematics and Mechanics, MoscowState University, Russia;
National Research University Higher School of Economics, Moscow, Russia
tpanov@mech.math.msu.su

Abstract.

We prove that the moment-angle complex 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT corresponding to a 3333-dimensional simplicial sphere 𝒦𝒦\mathcal{K}caligraphic_K has the cohom*ology ring isomorphic to the cohom*ology ring of a connected sum of products of spheres if and only if either (a) 𝒦𝒦\mathcal{K}caligraphic_K is the boundary of a 4444-dimensional cross-polytope, or (b) the one-skeleton of 𝒦𝒦\mathcal{K}caligraphic_K is a chordal graph, or (c) there are only two missing edges in 𝒦𝒦\mathcal{K}caligraphic_K and they form a chordless 4444-cycle. For simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K of arbitrary dimension, we obtain a sufficient condition for the ring isomorphism Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝒦superscript𝐻𝑀H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ) where M𝑀Mitalic_M is a connected sum of products of spheres.

2020 Mathematics Subject Classification:

57S12, 57N65

This work was carried out within the project β€œMirror Laboratories” of HSE University, Russian Federation. Victoria Oganisian is supported by a stipend from the Theoretical Physics and Mathematics Advancement Foundation β€œBASIS”

1. Introduction

The moment-angle complex is a topological space (a CW complex) with a torus action that features in toric topology and hom*otopy theory of polyhedral products[BP]. The topology of a moment-angle complex 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is determined by the combinatorics of the corresponding simplicial complex𝒦𝒦\mathcal{K}caligraphic_K.If 𝒦𝒦\mathcal{K}caligraphic_K is the nerve complex of a simple polytope P𝑃Pitalic_P, then the corresponding moment-angle complex, which is denoted by 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT, is a smooth manifold.

There are several different geometric constructions of moment-angle manifolds enriching their topology with remarkable and peculiar geometric structures. One of them arises in holomorphic dynamics, where the moment-angle manifold 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT appears as the leaf space of a holomorphic foliation on an open subset of a complex space, and is diffeomorphic to a nondegenerate intersection of Hermitian quadrics[BM], [BP, Chapter6]. All early examples of moment-angle manifolds appearing in this context where diffeomorphic to connected sums of products of spheres. This is the case, for example, when P𝑃Pitalic_P is two-dimensional (a polygon). From the description of the cohom*ology ring of 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT it became clear that the topology of moment-angle manifolds in general is much more complicated than that of a connected sum of sphere products; for instance, Hβˆ—β’(𝒡P)superscript𝐻subscript𝒡𝑃H^{*}(\mathcal{Z}_{P})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) can have arbitrary additive torsion or nontrivial higher Massey products[BP, Chapter4].

Nevertheless, the question remained of identifying the class of simple polytopes P𝑃Pitalic_P (or more generally, simplicial spheres𝒦𝒦\mathcal{K}caligraphic_K) for which the moment-angle manifold 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is homeomorphic to a connected sum of products of spheres. This question is also interesting from the combinatorial and hom*otopy-theoretic points of view, as it is related to the conditions for the minimal non-Golodness of 𝒦𝒦\mathcal{K}caligraphic_K and the chordality of its one-skeleton. For three-dimensional polytopes P𝑃Pitalic_P (or two-dimensional spheres 𝒦𝒦\mathcal{K}caligraphic_K), it was proved in[BM, Proposition11.6] that 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is diffeomorphic to a connected sum of products of spheres if and only if P𝑃Pitalic_P is obtained from the 3-simplex by consecutively cutting off some l𝑙litalic_l vertices. This characterisation can be extended by adding two more equivalent conditions, the chordality and the minimal non-Golodness (see Proposition3.1):

Proposition.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a two-dimensional simplicial sphere and let P𝑃Pitalic_P be the a three-dimensional simple polytope such that 𝒦=𝒦P𝒦subscript𝒦𝑃\mathcal{K}=\mathcal{K}_{P}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. Suppose that P𝑃Pitalic_P is not a cube. The following conditions are equivalent:

  • (a)

    P𝑃Pitalic_P is obtained from the simplex Ξ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT by iterating the vertex cut operation, i. e. Pβˆ—superscript𝑃P^{*}italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a stacked polytope;

  • (b)

    𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is diffeomorphic to a connected sum of products of spheres;

  • (c)

    Hβˆ—β’(𝒡P)superscript𝐻subscript𝒡𝑃H^{*}(\mathcal{Z}_{P})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres;

  • (d)

    the one-dimensional skeleton of the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a chordal graph;

  • (e)

    𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is minimally non-Golod, unless P=Ξ”3𝑃superscriptΞ”3P=\Delta^{3}italic_P = roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

For three-dimensional simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K (including the nerve complexes of four-dimensional simple polytopes) we characterise the moment-angle manifolds 𝒡Ksubscript𝒡𝐾\mathcal{Z}_{K}caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT with the cohom*ology ring isomorphic to the cohom*ology ring of a connected sum of products of spheres (see Theorem4.4):

Theorem.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a three-dimensional simplicial sphere. There is a ring isomorphism Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres if and only if one of the following conditions is satisfied:

  • (a)

    𝒦=S0βˆ—S0βˆ—S0βˆ—S0𝒦superscript𝑆0superscript𝑆0superscript𝑆0superscript𝑆0\mathcal{K}=S^{0}*S^{0}*S^{0}*S^{0}caligraphic_K = italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (the boundary of a 4444-dimensional cross-polytope);

  • (b)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph;

  • (c)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has exactly two missing edges which form a chordless 4444-cycle.

We conjecture that under each of the conditions (b) and (c) above the moment-angle manifold 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is homeomorphic to a connected sum of products of spheres. Under condition (c) we have Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where one of the summands Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of three spheres. The first example of such 𝒦𝒦\mathcal{K}caligraphic_K was constucted in[FCMW].

When dimPβ‰₯5dimension𝑃5\dim P\geq 5roman_dim italic_P β‰₯ 5, the chordality of 𝒦P1subscriptsuperscript𝒦1𝑃\mathcal{K}^{1}_{P}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT does not imply that Hβˆ—β’(𝒡P)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝑃superscript𝐻𝑀H^{*}(\mathcal{Z}_{P})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ) where M𝑀Mitalic_M is a connected sum of products of spheres, see Example2.9. A stronger sufficient condition valid for simplicial spheres of arbitrary dimension is given in Theorem4.3.

2. Preliminaries

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial complex on the set [m]={1,…,m}delimited-[]π‘š1β€¦π‘š[m]=\{1,\ldots,m\}[ italic_m ] = { 1 , … , italic_m }. We assume that 𝒦𝒦\mathcal{K}caligraphic_K contains an empty set βˆ…\varnothingβˆ… and all one element subsets {i}βŠ‚[m]𝑖delimited-[]π‘š\{i\}\subset[m]{ italic_i } βŠ‚ [ italic_m ]. The dimension of a simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K is the maximal cardinality of its simplices minus one.

We denote the full subcomplex of 𝒦𝒦\mathcal{K}caligraphic_K on a vertex set J={j1,…,jk}βŠ‚[m]𝐽subscript𝑗1…subscriptπ‘—π‘˜delimited-[]π‘šJ=\{j_{1},\ldots,j_{k}\}\subset[m]italic_J = { italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } βŠ‚ [ italic_m ] by 𝒦Jsubscript𝒦𝐽\mathcal{K}_{J}caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT or by 𝒦{j1,…,jk}subscript𝒦subscript𝑗1…subscriptπ‘—π‘˜\mathcal{K}_{\{j_{1},\ldots,j_{k}\}}caligraphic_K start_POSTSUBSCRIPT { italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } end_POSTSUBSCRIPT.

The moment-angle complex 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT corresponding to 𝒦𝒦\mathcal{K}caligraphic_K is defined as follows (see [BP, Β§4.1]):

𝒡𝒦=⋃IβŠ‚π’¦β’(∏i∈I⁒D2Γ—βˆiβˆ‰I⁒S1)βŠ‚βˆi=1mD2.subscript𝒡𝒦𝐼𝒦𝑖𝐼productsuperscript𝐷2𝑖𝐼productsuperscript𝑆1superscriptsubscriptproduct𝑖1π‘šsuperscript𝐷2\mathcal{Z}_{\mathcal{K}}=\underset{I\subset\mathcal{K}}{\bigcup}\Bigl{(}%\underset{i\in I}{\prod}D^{2}\times\underset{i\notin I}{\prod}S^{1}\Bigr{)}%\subset\prod_{i=1}^{m}D^{2}\,.caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT = start_UNDERACCENT italic_I βŠ‚ caligraphic_K end_UNDERACCENT start_ARG ⋃ end_ARG ( start_UNDERACCENT italic_i ∈ italic_I end_UNDERACCENT start_ARG ∏ end_ARG italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Γ— start_UNDERACCENT italic_i βˆ‰ italic_I end_UNDERACCENT start_ARG ∏ end_ARG italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) βŠ‚ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .
Lemma 2.1.

If 𝒦Jsubscript𝒦𝐽\mathcal{K}_{J}caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT is a full subcomplex of 𝒦𝒦\mathcal{K}caligraphic_K, then 𝒡𝒦Jsubscript𝒡subscript𝒦𝐽\mathcal{Z}_{\mathcal{K}_{J}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a retract of 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT, and Hβˆ—β’(𝒡𝒦J)superscript𝐻subscript𝒡subscript𝒦𝐽H^{*}(\mathcal{Z}_{\mathcal{K}_{J}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) is a subring of Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ).

Proof..

Let i:𝒡𝒦β†ͺ(D2)m:𝑖β†ͺsubscript𝒡𝒦superscriptsuperscript𝐷2π‘ši\colon\mathcal{Z}_{\mathcal{K}}\hookrightarrow(D^{2})^{m}italic_i : caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT β†ͺ ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT be canonical inclusion, and let q:(D2)mβ†’(D2)|J|:π‘žβ†’superscriptsuperscript𝐷2π‘šsuperscriptsuperscript𝐷2𝐽q\colon(D^{2})^{m}\rightarrow(D^{2})^{|J|}italic_q : ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT β†’ ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT | italic_J | end_POSTSUPERSCRIPT be the map that omits the coordinates corresponding to [m]βˆ–Jdelimited-[]π‘šπ½[m]\setminus J[ italic_m ] βˆ– italic_J. Then r=q∘i:𝒡𝒦→𝒡𝒦J:π‘Ÿπ‘žπ‘–β†’subscript𝒡𝒦subscript𝒡subscript𝒦𝐽r=q\circ i\colon\mathcal{Z}_{\mathcal{K}}\rightarrow\mathcal{Z}_{\mathcal{K}_{%J}}italic_r = italic_q ∘ italic_i : caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT β†’ caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT is the required retraction, and it induces an injective hom*omorphism Hβˆ—β’(𝒡𝒦J)β†’Hβˆ—β’(𝒡𝒦)β†’superscript𝐻subscript𝒡subscript𝒦𝐽superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}_{J}})\to H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) β†’ italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) in cohom*ology.∎

Theorem 2.2 ([BP, Theorem 4.5.8]).

There are isomorphisms of groups

Hl⁒(𝒡𝒦)≅⨁JβŠ‚[m]⁒H~lβˆ’|J|βˆ’1⁒(𝒦J)superscript𝐻𝑙subscript𝒡𝒦𝐽delimited-[]π‘šdirect-sumsuperscript~𝐻𝑙𝐽1subscript𝒦𝐽H^{l}(\mathcal{Z}_{\mathcal{K}})\cong\underset{J\subset[m]}{\bigoplus}%\widetilde{H}^{l-|J|-1}(\mathcal{K}_{J})italic_H start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… start_UNDERACCENT italic_J βŠ‚ [ italic_m ] end_UNDERACCENT start_ARG ⨁ end_ARG over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l - | italic_J | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT )

These isomorphisms combine to form a ring isomorphism Hβˆ—β’(𝒡𝒦)≅⨁JβŠ‚[m]⁒H~βˆ—β’(𝒦J)superscript𝐻subscript𝒡𝒦𝐽delimited-[]π‘šdirect-sumsuperscript~𝐻subscript𝒦𝐽H^{*}(\mathcal{Z}_{\mathcal{K}})\cong\underset{J\subset[m]}{\bigoplus}%\widetilde{H}^{*}(\mathcal{K}_{J})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… start_UNDERACCENT italic_J βŠ‚ [ italic_m ] end_UNDERACCENT start_ARG ⨁ end_ARG over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ), where the ring structure on the right hand side is given by the canonical maps

Hkβˆ’|I|βˆ’1⁒(𝒦I)βŠ—Hlβˆ’|J|βˆ’1⁒(𝒦J)⟢Hk+lβˆ’|I|βˆ’|J|βˆ’1⁒(𝒦IβˆͺJ),⟢tensor-productsuperscriptπ»π‘˜πΌ1subscript𝒦𝐼superscript𝐻𝑙𝐽1subscript𝒦𝐽superscriptπ»π‘˜π‘™πΌπ½1subscript𝒦𝐼𝐽H^{k-|I|-1}(\mathcal{K}_{I})\otimes H^{l-|J|-1}(\mathcal{K}_{J})%\longrightarrow H^{k+l-|I|-|J|-1}(\mathcal{K}_{I\cup J})\,,italic_H start_POSTSUPERSCRIPT italic_k - | italic_I | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) βŠ— italic_H start_POSTSUPERSCRIPT italic_l - | italic_J | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) ⟢ italic_H start_POSTSUPERSCRIPT italic_k + italic_l - | italic_I | - | italic_J | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) ,

which are induced by simplicial maps 𝒦IβˆͺJ→𝒦Iβˆ—π’¦Jβ†’subscript𝒦𝐼𝐽subscript𝒦𝐼subscript𝒦𝐽\mathcal{K}_{I\cup J}\rightarrow\mathcal{K}_{I}*\mathcal{K}_{J}caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT β†’ caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT for I∩J=βˆ…πΌπ½I\cap J=\varnothingitalic_I ∩ italic_J = βˆ… and zero otherwise.

We denote

β„‹l,J=H~l⁒(𝒦J),β„‹βˆ—,J=H~βˆ—β’(𝒦J)andβ„‹l,βˆ—=⨁JβŠ‚[m]⁒H~l⁒(𝒦J).formulae-sequencesuperscriptℋ𝑙𝐽superscript~𝐻𝑙subscript𝒦𝐽formulae-sequencesuperscriptℋ𝐽superscript~𝐻subscript𝒦𝐽andsuperscriptℋ𝑙𝐽delimited-[]π‘šdirect-sumsuperscript~𝐻𝑙subscript𝒦𝐽\mathcal{H}^{l,J}=\widetilde{H}^{l}(\mathcal{K}_{J}),\quad\mathcal{H}^{*,J}=%\widetilde{H}^{*}(\mathcal{K}_{J})\quad\text{and}\quad\mathcal{H}^{l,*}=%\underset{J\subset[m]}{\bigoplus}\widetilde{H}^{l}(\mathcal{K}_{J}).caligraphic_H start_POSTSUPERSCRIPT italic_l , italic_J end_POSTSUPERSCRIPT = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) , caligraphic_H start_POSTSUPERSCRIPT βˆ— , italic_J end_POSTSUPERSCRIPT = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) and caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT = start_UNDERACCENT italic_J βŠ‚ [ italic_m ] end_UNDERACCENT start_ARG ⨁ end_ARG over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) .

The ring structure in Hβˆ—β’(𝒡𝒦)=β„‹βˆ—,βˆ—β’(𝒦)superscript𝐻subscript𝒡𝒦superscriptℋ𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})=\mathcal{H}^{*,*}(\mathcal{K})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) = caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is given by the maps

(2.1)β„‹k,IβŠ—β„‹l,JβŸΆβ„‹k+l+1,IβŠ”J,k,lβ‰₯0,I∩J=βˆ….formulae-sequence⟢tensor-productsuperscriptβ„‹π‘˜πΌsuperscriptℋ𝑙𝐽superscriptβ„‹π‘˜π‘™1square-unionπΌπ½π‘˜formulae-sequence𝑙0𝐼𝐽\mathcal{H}^{k,I}\otimes\mathcal{H}^{l,J}\longrightarrow\mathcal{H}^{k+l+1,I%\sqcup J},\qquad k,l\geq 0,\;I\cap J=\varnothing.caligraphic_H start_POSTSUPERSCRIPT italic_k , italic_I end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_l , italic_J end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_k + italic_l + 1 , italic_I βŠ” italic_J end_POSTSUPERSCRIPT , italic_k , italic_l β‰₯ 0 , italic_I ∩ italic_J = βˆ… .
Proposition 2.3.

If 𝒦𝒦\mathcal{K}caligraphic_K is an n𝑛nitalic_n-dimensional simplicial complex, then the cohom*ological product length of 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is at most n+1𝑛1n+1italic_n + 1.

Proof..

Suppose there are elements ci∈Hli⁒(𝒡𝒦)subscript𝑐𝑖superscript𝐻subscript𝑙𝑖subscript𝒡𝒦c_{i}\in H^{l_{i}}(\mathcal{Z}_{\mathcal{K}})italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_H start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ), i=1,…,r𝑖1β€¦π‘Ÿi=1,\ldots,ritalic_i = 1 , … , italic_r, such thatc1⁒⋯⁒cr=cβ‰ 0subscript𝑐1β‹―subscriptπ‘π‘Ÿπ‘0c_{1}\cdots c_{r}=c\neq 0italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹― italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_c β‰  0.This implies, by Theorem2.2, that there are elementsc^∈H~l⁒(𝒦J)^𝑐superscript~𝐻𝑙subscript𝒦𝐽\widehat{c}\in\widetilde{H}^{l}(\mathcal{K}_{J})over^ start_ARG italic_c end_ARG ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) and c^i∈H~liβˆ’|Ji|βˆ’1⁒(𝒦Ji)subscript^𝑐𝑖superscript~𝐻subscript𝑙𝑖subscript𝐽𝑖1subscript𝒦subscript𝐽𝑖\widehat{c}_{i}\in\widetilde{H}^{l_{i}-|J_{i}|-1}(\mathcal{K}_{J_{i}})over^ start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) such that c^1⁒⋯⁒c^r=c^β‰ 0subscript^𝑐1β‹―subscript^π‘π‘Ÿ^𝑐0\widehat{c}_{1}\cdots\widehat{c}_{r}=\widehat{c}\neq 0over^ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹― over^ start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = over^ start_ARG italic_c end_ARG β‰  0, where l=(βˆ‘i=1rliβˆ’|Ji|βˆ’1)+rβˆ’1𝑙subscriptsuperscriptπ‘Ÿπ‘–1subscript𝑙𝑖subscript𝐽𝑖1π‘Ÿ1l=(\sum^{r}_{i=1}l_{i}-|J_{i}|-1)+r-1italic_l = ( βˆ‘ start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 ) + italic_r - 1, liβˆ’|Ji|βˆ’1β‰₯0subscript𝑙𝑖subscript𝐽𝑖10l_{i}-|J_{i}|-1\geq 0italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 β‰₯ 0 and J=J1βŠ”β‹―βŠ”Jr𝐽square-unionsubscript𝐽1β‹―subscriptπ½π‘ŸJ=J_{1}\sqcup\cdots\sqcup J_{r}italic_J = italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_J start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. It follows that

n=dim𝒦β‰₯l=(βˆ‘i=1rliβˆ’|Ji|βˆ’1)+rβˆ’1β‰₯rβˆ’1,𝑛dimension𝒦𝑙subscriptsuperscriptπ‘Ÿπ‘–1subscript𝑙𝑖subscript𝐽𝑖1π‘Ÿ1π‘Ÿ1n=\dim\mathcal{K}\geq l=\Bigl{(}\sum^{r}_{i=1}l_{i}-|J_{i}|-1\Bigr{)}+r-1\geq r%-1,italic_n = roman_dim caligraphic_K β‰₯ italic_l = ( βˆ‘ start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 ) + italic_r - 1 β‰₯ italic_r - 1 ,

hence n+1β‰₯r𝑛1π‘Ÿn+1\geq ritalic_n + 1 β‰₯ italic_r, as claimed.∎

A (convex) polytope P𝑃Pitalic_P is a bounded intersection of a finite number of halfspaces in a real affine space. A facet of P𝑃Pitalic_P is its face of codimension1111.

A polytope P𝑃Pitalic_P of dimension n𝑛nitalic_n is called simple if each vertex of P𝑃Pitalic_P belongs to exactly n𝑛nitalic_n facets. So if P𝑃Pitalic_P is simple, then the dual polytope Pβˆ—superscript𝑃P^{*}italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is simplicial and its boundary βˆ‚Pβˆ—superscript𝑃\partial P^{*}βˆ‚ italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a simplicial complex, which we denote by 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. Then 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is the nerve complex of the covering of βˆ‚P𝑃\partial Pβˆ‚ italic_P by its facets. The moment-angle complex 𝒡𝒦Psubscript𝒡subscript𝒦𝑃\mathcal{Z}_{\mathcal{K}_{P}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT end_POSTSUBSCRIPT is denoted simply by𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT.

A simplicial sphere (or triangulated sphere) is a simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K whose geometric realisation is homeomorphic to a sphere. If P𝑃Pitalic_P is a simple polytope of dimensionn𝑛nitalic_n, then the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a simplicial sphere of dimensionnβˆ’1𝑛1n-1italic_n - 1.For n≀3𝑛3n\leq 3italic_n ≀ 3, any simplicial sphere of dimension nβˆ’1𝑛1n-1italic_n - 1 is combinatorially equivalent to the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT of a simple n𝑛nitalic_n-dimensional polytopeP𝑃Pitalic_P. This is not true in dimensions nβ‰₯4𝑛4n\geq 4italic_n β‰₯ 4; the Barnette sphere is a famous example of a 3333-dimensional simplicial sphere with 8888 vertices that is not combinatorially equivalent to the boundary of a convex 4444-dimensional polytope (see[BP, Β§2.5]).

Theorem 2.4 ([BP, Theorem 4.1.4, Corollary 6.2.5]).

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension (nβˆ’1)𝑛1(n-1)( italic_n - 1 ) with mπ‘šmitalic_m vertices. Then 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is a closed topological manifold of dimension m+nπ‘šπ‘›m+nitalic_m + italic_n. If P𝑃Pitalic_P be a simple n𝑛nitalic_n-dimensional polytope with mπ‘šmitalic_m facets, then 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a smooth manifold of dimension m+nπ‘šπ‘›m+nitalic_m + italic_n.

A simple polytope Q𝑄Qitalic_Q is called stacked if it can be obtained from a simplex by a sequence of stellar subdivisions of facets. Equivalently, the dual simple polytope P=Qβˆ—π‘ƒsuperscript𝑄P=Q^{*}italic_P = italic_Q start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is obtained from a simplex by iterating the vertex cut operation.

A connected sum of products of spheres is a closed n𝑛nitalic_n-dimensional manifold M𝑀Mitalic_M homeomorphic to a connected sum M1⁒#⁒⋯⁒#⁒Mksubscript𝑀1#β‹―#subscriptπ‘€π‘˜M_{1}\#\cdots\#M_{k}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT where each Mksubscriptπ‘€π‘˜M_{k}italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is a product spheres Snk⁒1Γ—β‹―Γ—Snk⁒lsuperscript𝑆subscriptπ‘›π‘˜1β‹―superscript𝑆subscriptπ‘›π‘˜π‘™S^{n_{k1}}\times\cdots\times S^{n_{kl}}italic_S start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_k 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT Γ— β‹― Γ— italic_S start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_k italic_l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, where nk⁒1+β‹―+nk⁒l=nsubscriptπ‘›π‘˜1β‹―subscriptπ‘›π‘˜π‘™π‘›n_{k1}+\cdots+n_{kl}=nitalic_n start_POSTSUBSCRIPT italic_k 1 end_POSTSUBSCRIPT + β‹― + italic_n start_POSTSUBSCRIPT italic_k italic_l end_POSTSUBSCRIPT = italic_n.

The next theorem follows from the results of McGavran[M], see[BM, Theorem6.3]. See also[GL, Β§2.2] for a different approach.

Theorem 2.5 (see [BP, Theorem4.6.12]).

Let P𝑃Pitalic_P be a dual stacked n𝑛nitalic_n-polytope with m>n+1π‘šπ‘›1m>n+1italic_m > italic_n + 1 facets. Then the corresponding moment-angle manifold is homeomorphic to a connected sum of products of spheres with two spheres in each product, namely,

𝒡Pβ‰…#k=3mβˆ’n+1⁒(SkΓ—Sm+nβˆ’k)#⁒(kβˆ’2)⁒(mβˆ’nkβˆ’1)subscriptπ’΅π‘ƒπ‘˜3π‘šπ‘›1#superscriptsuperscriptπ‘†π‘˜superscriptπ‘†π‘šπ‘›π‘˜#π‘˜2binomialπ‘šπ‘›π‘˜1\mathcal{Z}_{P}\cong\underset{k=3}{\overset{m-n+1}{\#}}(S^{k}\times S^{m+n-k})%^{\#(k-2)\binom{m-n}{k-1}}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT β‰… start_UNDERACCENT italic_k = 3 end_UNDERACCENT start_ARG start_OVERACCENT italic_m - italic_n + 1 end_OVERACCENT start_ARG # end_ARG end_ARG ( italic_S start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT italic_m + italic_n - italic_k end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT # ( italic_k - 2 ) ( FRACOP start_ARG italic_m - italic_n end_ARG start_ARG italic_k - 1 end_ARG ) end_POSTSUPERSCRIPT

In particular, the moment-angle complex corresponding to a polygon (a two-dimensional polytope) is a connected sum of products of spheres.

A graph ΓΓ\Gammaroman_Ξ“ is a one-dimensional simplicial complex.A graph ΓΓ\Gammaroman_Ξ“ is called chordal if every cycle of ΓΓ\Gammaroman_Ξ“ with more than 3333 vertices has a chord, where a chord is an edge connecting two vertices that are not adjacent in the cycle.The vertices of a graph are in perfect elimination order if for any vertex {i}𝑖\{i\}{ italic_i } all its neighbours with indices less than i𝑖iitalic_i are pairwise adjacent.

Theorem 2.6 ([FG]).

A graph is chordal if and only if its vertices can be arranged in a perfect elimination order.

The following property of chordal graphs is immediate from Theorem2.6.

Proposition 2.7.

Let ΓΓ\Gammaroman_Ξ“ be a chordal graph on mπ‘šmitalic_m vertices, and suppose that the vertices of ΓΓ\Gammaroman_Ξ“ are arranged in a perfect elimination order. Then Ξ“βˆ–{m}Ξ“π‘š\Gamma\setminus\{m\}roman_Ξ“ βˆ– { italic_m } is also a chordal graph, and the vertices of Ξ“βˆ–{m}Ξ“π‘š\Gamma\setminus\{m\}roman_Ξ“ βˆ– { italic_m } are automatically arranged in the perfect elimination order.

Lemma 2.8.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension greater than 1111 such that Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of two spheres. Then the one-skeleton 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph.

Proof..

Let dim𝒦=nβˆ’1dimension𝒦𝑛1\dim\mathcal{K}=n-1roman_dim caligraphic_K = italic_n - 1 and Mi=SliΓ—Sm+nβˆ’lisubscript𝑀𝑖superscript𝑆subscript𝑙𝑖superscriptπ‘†π‘šπ‘›subscript𝑙𝑖M_{i}=S^{l_{i}}\times S^{m+n-l_{i}}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_S start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT italic_m + italic_n - italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, i=1,…,k𝑖1β€¦π‘˜i=1,\ldots,kitalic_i = 1 , … , italic_k. We denote the corresponding generators of Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) by aisubscriptπ‘Žπ‘–a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, bisubscript𝑏𝑖b_{i}italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, where deg⁑ai=lidegreesubscriptπ‘Žπ‘–subscript𝑙𝑖\deg a_{i}=l_{i}roman_deg italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, deg⁑bi=m+nβˆ’lidegreesubscriptπ‘π‘–π‘šπ‘›subscript𝑙𝑖\deg b_{i}=m+n-l_{i}roman_deg italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_m + italic_n - italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, i=1,…,k𝑖1β€¦π‘˜i=1,\ldots,kitalic_i = 1 , … , italic_k, and c𝑐citalic_c, deg⁑c=m+ndegreeπ‘π‘šπ‘›\deg c=m+nroman_deg italic_c = italic_m + italic_n (the fundamental class). We have relations aiβ‹…bi=cβ‹…subscriptπ‘Žπ‘–subscript𝑏𝑖𝑐a_{i}\cdot b_{i}=citalic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_c for i=1,…,k𝑖1β€¦π‘˜i=1,\ldots,kitalic_i = 1 , … , italic_k, and all other products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) are trivial.

Suppose that there is a chordless cycle C𝐢Citalic_C in 𝒦𝒦\mathcal{K}caligraphic_K with p>3𝑝3p>3italic_p > 3 vertices. Then C𝐢Citalic_C is a full subcomplex in 𝒦𝒦\mathcal{K}caligraphic_K, therefore Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) is a subring of Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) by Lemma2.1. By Theorem2.5 𝒡Csubscript𝒡𝐢\mathcal{Z}_{C}caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT is also a connected sum of products of spheres, so there are nontrivial products ajβ€²β‹…bjβ€²=cβ€²β‹…subscriptsuperscriptπ‘Žβ€²π‘—subscriptsuperscript𝑏′𝑗superscript𝑐′a^{\prime}_{j}\cdot b^{\prime}_{j}=c^{\prime}italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‹… italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT in the ring Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ), where cβ€²superscript𝑐′c^{\prime}italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is the fundamental class of 𝒡Csubscript𝒡𝐢\mathcal{Z}_{C}caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT and deg⁑cβ€²=|C|+2≀m+2<m+n=deg⁑cdegreesuperscript𝑐′𝐢2π‘š2π‘šπ‘›degree𝑐\deg c^{\prime}=|C|+2\leq m+2<m+n=\deg croman_deg italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = | italic_C | + 2 ≀ italic_m + 2 < italic_m + italic_n = roman_deg italic_c, which is impossible in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ).Thus, there are no chordless cycles in 𝒦𝒦\mathcal{K}caligraphic_K with more than three vertices, so 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph.∎

The converse of Lemma2.8 holds for two- and three-dimensional spheres, as shown in the next two sections, but fails in higher dimensions, as shown by the example below. A missing edge of 𝒦𝒦\mathcal{K}caligraphic_K is a pair of vertices that do not form a 1111-simplex.

Example 2.9.

Let P𝑃Pitalic_P be the three-dimensional polytope obtained by cutting two vertices of the tetrahedronΞ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.By Theorem2.5,

𝒡Pβ‰…(S3Γ—S6)#⁒3⁒#⁒(S4Γ—S5)#⁒2.subscript𝒡𝑃superscriptsuperscript𝑆3superscript𝑆6#3#superscriptsuperscript𝑆4superscript𝑆5#2\mathcal{Z}_{P}\cong(S^{3}\times S^{6})^{\#3}\#(S^{4}\times S^{5})^{\#2}\,.caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT β‰… ( italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT # 3 end_POSTSUPERSCRIPT # ( italic_S start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT # 2 end_POSTSUPERSCRIPT .

Now let Pβ€²=PΓ—Ξ”dsuperscript𝑃′𝑃superscriptΔ𝑑P^{\prime}=P\times\Delta^{d}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_P Γ— roman_Ξ” start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT, where d>1𝑑1d>1italic_d > 1, so that 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is a simplicial sphere of dimension d+2>3𝑑23d+2>3italic_d + 2 > 3.We have 𝒡Pβ€²=𝒡P×𝒡Δd≅𝒡PΓ—S2⁒dβˆ’1subscript𝒡superscript𝑃′subscript𝒡𝑃subscript𝒡superscriptΔ𝑑subscript𝒡𝑃superscript𝑆2𝑑1\mathcal{Z}_{P^{\prime}}=\mathcal{Z}_{P}\times\mathcal{Z}_{\Delta^{d}}\cong%\mathcal{Z}_{P}\times S^{2d-1}caligraphic_Z start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT Γ— caligraphic_Z start_POSTSUBSCRIPT roman_Ξ” start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT end_POSTSUBSCRIPT β‰… caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 2 italic_d - 1 end_POSTSUPERSCRIPT, which is not a connected sum of products of spheres. However, 𝒦Pβ€²1superscriptsubscript𝒦superscript𝑃′1\mathcal{K}_{P^{\prime}}^{1}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph. Indeed, 𝒦Pβ€²=𝒦Pβˆ—βˆ‚Ξ”dsubscript𝒦superscript𝑃′subscript𝒦𝑃superscriptΔ𝑑\mathcal{K}_{P^{\prime}}=\mathcal{K}_{P}*\partial\Delta^{d}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ— βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Hence, each missing edge of 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is a missing edge of𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. There are only three missing edges in 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, and no two of them form a chordless 4444-cycle. Also, there can be no chordless cycles with more than 4444 vertices, as any such chordless cycle has at least 5555 missing edges.

The next lemma builds upon the results of[FCMW, Β§4].

Lemma 2.10.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension >1absent1>1> 1 such thatHβˆ—β’(𝒡K)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝐾superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{K})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres. Suppose that𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is not a chordal graph. Then all missing edges I1,…,Irsubscript𝐼1…subscriptπΌπ‘ŸI_{1},\ldots,I_{r}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT of 𝒦𝒦\mathcal{K}caligraphic_K are pairwise disjoint and

𝒦I1βŠ”I2βŠ”β‹―βŠ”Ir=𝒦I1βˆ—π’¦I2βˆ—β‹―βˆ—π’¦Ir.subscript𝒦square-unionsubscript𝐼1subscript𝐼2β‹―subscriptπΌπ‘Ÿsubscript𝒦subscript𝐼1subscript𝒦subscript𝐼2β‹―subscript𝒦subscriptπΌπ‘Ÿ\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup\cdots\sqcup I_{r}}=\mathcal{K}_{I_{1}}*%\mathcal{K}_{I_{2}}*\cdots*\mathcal{K}_{I_{r}}.caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT .
Proof..

By [FCMW, Lemma4.5] any chordless cycle in 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has three or four vertices. Since 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is not chordal, it contains a chordless 4444-cycle. Then by[FCMW, Lemma4.6] missing edges of 𝒦𝒦\mathcal{K}caligraphic_K are pairwise disjoint, i. e. each pair of missing edges forms a chordless 4444-cycle.

We have H3⁒(𝒡𝒦)≅⨁|J|=2H~0⁒(𝒦J)=⨁j=1rH~0⁒(𝒦Ij)superscript𝐻3subscript𝒡𝒦subscriptdirect-sum𝐽2superscript~𝐻0subscript𝒦𝐽superscriptsubscriptdirect-sum𝑗1π‘Ÿsuperscript~𝐻0subscript𝒦subscript𝐼𝑗H^{3}(\mathcal{Z}_{\mathcal{K}})\cong\bigoplus_{|J|=2}\widetilde{H}^{0}(%\mathcal{K}_{J})=\bigoplus_{j=1}^{r}\widetilde{H}^{0}(\mathcal{K}_{I_{j}})italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… ⨁ start_POSTSUBSCRIPT | italic_J | = 2 end_POSTSUBSCRIPT over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) = ⨁ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) by Theorem2.2. Choose a basis a1,…,arsubscriptπ‘Ž1…subscriptπ‘Žπ‘Ÿa_{1},\ldots,a_{r}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT of H3⁒(𝒡𝒦)superscript𝐻3subscript𝒡𝒦H^{3}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) according to this decomposition, so that ajsubscriptπ‘Žπ‘—a_{j}italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT corresponds to a generator of H~0⁒(𝒦Ij)=H~0⁒(S0)β‰…β„€superscript~𝐻0subscript𝒦subscript𝐼𝑗superscript~𝐻0superscript𝑆0β„€\widetilde{H}^{0}(\mathcal{K}_{I_{j}})=\widetilde{H}^{0}(S^{0})\cong\mathbb{Z}over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) β‰… blackboard_Z for j=1,…,r𝑗1β€¦π‘Ÿj=1,\ldots,ritalic_j = 1 , … , italic_r. Each product ajβ‹…akβ‹…subscriptπ‘Žπ‘—subscriptπ‘Žπ‘˜a_{j}\cdot a_{k}italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is nonzero by Theorem2.2, because 𝒦IjβŠ”Iksubscript𝒦square-unionsubscript𝐼𝑗subscriptπΌπ‘˜\mathcal{K}_{I_{j}\sqcup I_{k}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a 4444-cycle.

Through the ring isomorphism Hβˆ—β’(𝒡K)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝐾superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{K})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), three-dimensional sphere factors Sj⁒i3subscriptsuperscript𝑆3𝑗𝑖S^{3}_{ji}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT in the connected summands Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT correspond to cohom*ology classes in H3⁒(𝒡K)superscript𝐻3subscript𝒡𝐾H^{3}(\mathcal{Z}_{K})italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ), which we denote by s1,…,srsubscript𝑠1…subscriptπ‘ π‘Ÿs_{1},\ldots,s_{r}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. We have H3⁒(𝒡K)β‰…β„€β’βŸ¨a1,…,arβŸ©β‰…β„€β’βŸ¨s1,…,sr⟩superscript𝐻3subscript𝒡𝐾℀subscriptπ‘Ž1…subscriptπ‘Žπ‘Ÿβ„€subscript𝑠1…subscriptπ‘ π‘ŸH^{3}(\mathcal{Z}_{K})\cong\mathbb{Z}\langle a_{1},\ldots,a_{r}\rangle\cong%\mathbb{Z}\langle s_{1},\ldots,s_{r}\rangleitalic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) β‰… blackboard_Z ⟨ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ⟩ β‰… blackboard_Z ⟨ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ⟩. Furthermore, if we denote the subring of Hβˆ—β’(𝒡K)superscript𝐻subscript𝒡𝐾H^{*}(\mathcal{Z}_{K})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) generated by a1,…,arsubscriptπ‘Ž1…subscriptπ‘Žπ‘Ÿa_{1},\ldots,a_{r}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT by A𝐴Aitalic_A and denote the subring generated by s1,…,srsubscript𝑠1…subscriptπ‘ π‘Ÿs_{1},\ldots,s_{r}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT by R𝑅Ritalic_R, then we have a ring isomorphism Aβ‰…R𝐴𝑅A\cong Ritalic_A β‰… italic_R. Since aiβ‹…ajβ‰ 0β‹…subscriptπ‘Žπ‘–subscriptπ‘Žπ‘—0a_{i}\cdot a_{j}\neq 0italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‰  0 for any iβ‰ j𝑖𝑗i\neq jitalic_i β‰  italic_j, we have missingr⁒a⁒n⁒k⁒A6=missingr⁒a⁒n⁒k⁒R6=r⁒(rβˆ’1)2missingπ‘Ÿπ‘Žπ‘›π‘˜superscript𝐴6missingπ‘Ÿπ‘Žπ‘›π‘˜superscript𝑅6π‘Ÿπ‘Ÿ12\mathop{\mathrm{missing}}{rank}A^{6}=\mathop{\mathrm{missing}}{rank}R^{6}=%\frac{r(r-1)}{2}roman_missing italic_r italic_a italic_n italic_k italic_A start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = roman_missing italic_r italic_a italic_n italic_k italic_R start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = divide start_ARG italic_r ( italic_r - 1 ) end_ARG start_ARG 2 end_ARG. This implies that siβ‹…sjβ‰ 0β‹…subscript𝑠𝑖subscript𝑠𝑗0s_{i}\cdot s_{j}\neq 0italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_s start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‰  0 for iβ‰ j𝑖𝑗i\neq jitalic_i β‰  italic_j. It follows that all spheres Sj⁒i3subscriptsuperscript𝑆3𝑗𝑖S^{3}_{ji}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT, j=1,…,r𝑗1β€¦π‘Ÿj=1,\ldots,ritalic_j = 1 , … , italic_r, belong to the same connected summandMisubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, because the product of the cohom*ology classes corresponding to sphere factors in different summands of the connected sum M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mksubscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜M_{1}\#M_{2}\#\cdots\#M_{k}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is zero. Therefore, s1β‹…s2⁒⋯⁒srβ‰ 0β‹…subscript𝑠1subscript𝑠2β‹―subscriptπ‘ π‘Ÿ0s_{1}\cdot s_{2}\cdots s_{r}\neq 0italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT β‰  0 inR𝑅Ritalic_R. This implies, by the ring isomorphism Aβ‰…R𝐴𝑅A\cong Ritalic_A β‰… italic_R, that a1β‹…a2⁒⋯⁒arβ‹…subscriptπ‘Ž1subscriptπ‘Ž2β‹―subscriptπ‘Žπ‘Ÿa_{1}\cdot a_{2}\cdots a_{r}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is nonzero in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ). Now it follows from the product description in Theorem2.2 that 𝒦I1βŠ”I2βŠ”β‹―βŠ”Ir=𝒦I1βˆ—π’¦I2βˆ—β‹―βˆ—π’¦Irsubscript𝒦square-unionsubscript𝐼1subscript𝐼2β‹―subscriptπΌπ‘Ÿsubscript𝒦subscript𝐼1subscript𝒦subscript𝐼2β‹―subscript𝒦subscriptπΌπ‘Ÿ\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup\cdots\sqcup I_{r}}=\mathcal{K}_{I_{1}}*%\mathcal{K}_{I_{2}}*\cdots*\mathcal{K}_{I_{r}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT.∎

3. Two-dimensional spheres

Here we consider moment-angle manifolds corresponding to two-dimensional simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K or, equivalently, to three-dimensional simple polytopes P𝑃Pitalic_P.

The case P=I3𝑃superscript𝐼3P=I^{3}italic_P = italic_I start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT (a three-dimensional cube) is special. In this case the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is S0βˆ—S0βˆ—S0superscript𝑆0superscript𝑆0superscript𝑆0S^{0}*S^{0}*S^{0}italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (the join of three 00-dimensional spheres, or the boundary of a three-dimensional cross-polytope) and 𝒡Pβ‰…S3Γ—S3Γ—S3subscript𝒡𝑃superscript𝑆3superscript𝑆3superscript𝑆3\mathcal{Z}_{P}\cong S^{3}\times S^{3}\times S^{3}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT β‰… italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

A simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K is called Golod if the multiplication and all higher Massey products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) are trivial. (Equivalently, the Stanley–Reisner ring 𝐀⁒[𝒦]𝐀delimited-[]𝒦\mathbf{k}[\mathcal{K}]bold_k [ caligraphic_K ] is a Golod ring over any field 𝐀𝐀\mathbf{k}bold_k, see[BP, Β§4.9].) A simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K on [m]delimited-[]π‘š[m][ italic_m ] is called minimally non-Golod if 𝒦𝒦\mathcal{K}caligraphic_K is not Golod, but for any vertex i∈[m]𝑖delimited-[]π‘ši\in[m]italic_i ∈ [ italic_m ] the complex 𝒦[m]βˆ–{i}subscript𝒦delimited-[]π‘šπ‘–\mathcal{K}_{[m]\setminus\{i\}}caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– { italic_i } end_POSTSUBSCRIPT is Golod.

The following result extends[BM, Proposition11.6], where the equvalence of conditions (a), (b) and (c) was proved:

Proposition 3.1.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a two-dimensional simplicial sphere and let P𝑃Pitalic_P be the a three-dimensional simple polytope such that 𝒦=𝒦P𝒦subscript𝒦𝑃\mathcal{K}=\mathcal{K}_{P}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. Suppose that P𝑃Pitalic_P is not a cube. The following conditions are equivalent:

  • (a)

    P𝑃Pitalic_P is obtained from a simplex Ξ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT by iterating the vertex cut operation, i. e. Pβˆ—superscript𝑃P^{*}italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a stacked polytope;

  • (b)

    𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is diffeomorphic to a connected sum of products of spheres;

  • (c)

    Hβˆ—β’(𝒡P)superscript𝐻subscript𝒡𝑃H^{*}(\mathcal{Z}_{P})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres;

  • (d)

    the one-dimensional skeleton of the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a chordal graph;

  • (e)

    𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is minimally non-Golod, unless P=Ξ”3𝑃superscriptΞ”3P=\Delta^{3}italic_P = roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

Proof..

We prove the implications (a)⇒⇒\Rightarrow⇒(b)⇒⇒\Rightarrow⇒(c)⇒⇒\Rightarrow⇒(d)⇒⇒\Rightarrow⇒(a), (e)⇒⇒\Rightarrow⇒(d) and (a)⇒⇒\Rightarrow⇒(e).

(a)⇒⇒\Rightarrow⇒(b) This is Theorem2.5.

(b)⇒⇒\Rightarrow⇒(c) is clear.

(c)β‡’β‡’\Rightarrowβ‡’(d) Let Hβˆ—β’(𝒡P)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝑃superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{P})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres.Since the cohom*ological product length of 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is at most 3333(Corollary2.3), there is at most 3333 sphere factors in eachMisubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. If some Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT has exactly 3333 factors, then 𝒡P=S3Γ—S3Γ—S3subscript𝒡𝑃superscript𝑆3superscript𝑆3superscript𝑆3\mathcal{Z}_{P}=S^{3}\times S^{3}\times S^{3}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT = italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and P𝑃Pitalic_P is a cube by[FCMW, Theorem4.3(a)]. This contradicts the assumption.Now, 𝒦P1subscriptsuperscript𝒦1𝑃\mathcal{K}^{1}_{P}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a chordal graph by Lemma2.8.

(d)β‡’β‡’\Rightarrowβ‡’(a) We use induction on the number mπ‘šmitalic_m of facets of P𝑃Pitalic_P. The base m=4π‘š4m=4italic_m = 4 is clear, as P𝑃Pitalic_P is a simplex Ξ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT in this case.

For the induction step, assume that the vertices of 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT are arranged in a perfect elimination order. Let j1,…,jssubscript𝑗1…subscript𝑗𝑠j_{1},\ldots,j_{s}italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT be the vertices adjacent to the last vertexmπ‘šmitalic_m. First we prove that s=3𝑠3s=3italic_s = 3.

Let Fisubscript𝐹𝑖F_{i}italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT denote the i𝑖iitalic_ith facet ofP𝑃Pitalic_P. Since {j1,…,js}subscript𝑗1…subscript𝑗𝑠\{j_{1},\ldots,j_{s}\}{ italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT } is a clique of 𝒦P1subscriptsuperscript𝒦1𝑃\mathcal{K}^{1}_{P}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT, the facets Fj1,…,Fjssubscript𝐹subscript𝑗1…subscript𝐹subscript𝑗𝑠F_{j_{1}},\ldots,F_{j_{s}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , … , italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_POSTSUBSCRIPT are pairwise adjacent.Suppose that sβ‰₯4𝑠4s\geq 4italic_s β‰₯ 4. Renumbering the facets if necessary, we may assume that Fj1subscript𝐹subscript𝑗1F_{j_{1}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, Fj2subscript𝐹subscript𝑗2F_{j_{2}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, Fj3subscript𝐹subscript𝑗3F_{j_{3}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, Fj4subscript𝐹subscript𝑗4F_{j_{4}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are consecutive facets in a cyclic order aroundFmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, so that Fm∩Fj1∩Fj3=βˆ…subscriptπΉπ‘šsubscript𝐹subscript𝑗1subscript𝐹subscript𝑗3F_{m}\cap F_{j_{1}}\cap F_{j_{3}}=\varnothingitalic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = βˆ… and Fm∩Fj2∩Fj4=βˆ…subscriptπΉπ‘šsubscript𝐹subscript𝑗2subscript𝐹subscript𝑗4F_{m}\cap F_{j_{2}}\cap F_{j_{4}}=\varnothingitalic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = βˆ….Since Fj1subscript𝐹subscript𝑗1F_{j_{1}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Fj3subscript𝐹subscript𝑗3F_{j_{3}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are adjacent, the facets FmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, Fj1subscript𝐹subscript𝑗1F_{j_{1}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Fj3subscript𝐹subscript𝑗3F_{j_{3}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT form a 3333-belt (a prismatic 3333-circuit). This 3333-belt splits βˆ‚P𝑃\partial Pβˆ‚ italic_P into two connected components[BE, Lemma2.7.2]. The facets Fj2subscript𝐹subscript𝑗2F_{j_{2}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Fj4subscript𝐹subscript𝑗4F_{j_{4}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT lie in different components, so they cannot be adjacent. A contradiction. Hence, s=3𝑠3s=3italic_s = 3.

Since FmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT has 3333 adjacent facets, it is a triangle. If FmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is adjacent to a triangular facet, then P𝑃Pitalic_P is a simplex. Otherwise, there exist a polytope Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT such that P𝑃Pitalic_P is obtained from Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT by cutting a vertex with formation of a new facetFmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT.Then 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is obtained from 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT by removing the vertex {m}π‘š\{m\}{ italic_m } and adding simplex {j1,j2,j3}subscript𝑗1subscript𝑗2subscript𝑗3\{j_{1},j_{2},j_{3}\}{ italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT }. Hence, the 1111-skeleton of 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is also a chordal graph by Proposition2.7. Now Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has mβˆ’1π‘š1m-1italic_m - 1 facets, so we complete the induction step.

(e)β‡’β‡’\Rightarrowβ‡’(d) Let 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT be minimally non-Golod, and suppose there is a chordless cycle C𝐢Citalic_C in 𝒦P1superscriptsubscript𝒦𝑃1\mathcal{K}_{P}^{1}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT with p>3𝑝3p>3italic_p > 3 vertices. Then C𝐢Citalic_C is a full subcomplex of 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT and p<mπ‘π‘šp<mitalic_p < italic_m (otherwise 𝒦P=Csubscript𝒦𝑃𝐢\mathcal{K}_{P}=Ccaligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT = italic_C, which is impossible for a 3333-dimensional polytope). For any vertex v∈[m]βˆ–C𝑣delimited-[]π‘šπΆv\in[m]\setminus Citalic_v ∈ [ italic_m ] βˆ– italic_C, note that C𝐢Citalic_C is also a full subcomplex also in 𝒦Pβˆ–{v}subscript𝒦𝑃𝑣\mathcal{K}_{P}\setminus\{v\}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v }. Therefore, Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) is a subring of Hβˆ—β’(𝒡𝒦Pβˆ–{v})superscript𝐻subscript𝒡subscript𝒦𝑃𝑣H^{*}(\mathcal{Z}_{\mathcal{K}_{P}\setminus\{v\}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v } end_POSTSUBSCRIPT ) by Lemma2.1. On the other hand, there are nontrivial products is Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) by Theorem2.5, whereas all products in Hβˆ—β’(𝒡𝒦Pβˆ–{v})superscript𝐻subscript𝒡subscript𝒦𝑃𝑣H^{*}(\mathcal{Z}_{\mathcal{K}_{P}\setminus\{v\}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v } end_POSTSUBSCRIPT ) must be trivial, since 𝒦Pβˆ–{v}subscript𝒦𝑃𝑣\mathcal{K}_{P}\setminus\{v\}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v } is Golod. A contradiction. Hence, there are no chordless cycles in𝒦P1superscriptsubscript𝒦𝑃1\mathcal{K}_{P}^{1}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT.

(a)β‡’β‡’\Rightarrowβ‡’(e) This follows from[L, Theorem3.9]: if an n𝑛nitalic_n-dimensional simple polytope P𝑃Pitalic_P is obtained from Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT by a vertex cut, and 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is minimally non-Golod, then 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is also minimally non-Golod.∎

4. Three-dimensional spheres

Recall that the product in Hβˆ—β’(𝒡𝒦)=β„‹βˆ—,βˆ—β’(𝒦)superscript𝐻subscript𝒡𝒦superscriptℋ𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})=\mathcal{H}^{*,*}(\mathcal{K})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) = caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is given by(2.1).A nonzero element cβˆˆβ„‹l,J=H~l⁒(𝒦J)𝑐superscriptℋ𝑙𝐽superscript~𝐻𝑙subscript𝒦𝐽c\in\mathcal{H}^{l,J}=\widetilde{H}^{l}(\mathcal{K}_{J})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_l , italic_J end_POSTSUPERSCRIPT = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) is decomposable if c=βˆ‘i=1paiβ‹…bi𝑐superscriptsubscript𝑖1𝑝⋅subscriptπ‘Žπ‘–subscript𝑏𝑖c=\sum_{i=1}^{p}a_{i}\cdot b_{i}italic_c = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for some nonzero ai∈H~ri⁒(𝒦Ii)subscriptπ‘Žπ‘–superscript~𝐻subscriptπ‘Ÿπ‘–subscript𝒦subscript𝐼𝑖a_{i}\in\widetilde{H}^{r_{i}}(\mathcal{K}_{I_{i}})italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ), bi∈H~lβˆ’1βˆ’ri⁒(𝒦Jβˆ–Ii)subscript𝑏𝑖superscript~𝐻𝑙1subscriptπ‘Ÿπ‘–subscript𝒦𝐽subscript𝐼𝑖b_{i}\in\widetilde{H}^{l-1-r_{i}}(\mathcal{K}_{J\setminus I_{i}})italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l - 1 - italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J βˆ– italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ), where 0≀ri≀lβˆ’10subscriptπ‘Ÿπ‘–π‘™10\leq r_{i}\leq l-10 ≀ italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≀ italic_l - 1 and IiβŠ‚Jsubscript𝐼𝑖𝐽I_{i}\subset Jitalic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT βŠ‚ italic_J are proper subsets for i=1,…,p𝑖1…𝑝i=1,\ldots,pitalic_i = 1 , … , italic_p.

A missing face (or a minimal non-face) of 𝒦𝒦\mathcal{K}caligraphic_K is a subset IβŠ‚[m]𝐼delimited-[]π‘šI\subset[m]italic_I βŠ‚ [ italic_m ] such that I𝐼Iitalic_I is not a simplex of𝒦𝒦\mathcal{K}caligraphic_K, but every proper subset of I𝐼Iitalic_I is a simplex of𝒦𝒦\mathcal{K}caligraphic_K. Each missing face corresponds to a full subcomplex βˆ‚Ξ”IβŠ‚π’¦subscriptΔ𝐼𝒦\partial\Delta_{I}\subset\mathcal{K}βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT βŠ‚ caligraphic_K, where βˆ‚Ξ”IsubscriptΔ𝐼\partial\Delta_{I}βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT denotes the boundary of simplex Ξ”IsubscriptΔ𝐼\Delta_{I}roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT on the vertex setI𝐼Iitalic_I. A missing face I𝐼Iitalic_I defines a simplicial hom*ology class in H~|I|βˆ’2⁒(𝒦)subscript~𝐻𝐼2𝒦\widetilde{H}_{|I|-2}(\mathcal{K})over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT | italic_I | - 2 end_POSTSUBSCRIPT ( caligraphic_K ), which we continue to denote byβˆ‚Ξ”IsubscriptΔ𝐼\partial\Delta_{I}βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT.We denote by missingM⁒Fn⁒(𝒦)missing𝑀subscript𝐹𝑛𝒦\mathop{\mathrm{missing}}{MF}_{n}(\mathcal{K})roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( caligraphic_K ) the set of missing faces I𝐼Iitalic_I of dimension n𝑛nitalic_n, that is, with |I|=n+1𝐼𝑛1|I|=n+1| italic_I | = italic_n + 1.

Lemma 4.1.

Let I∈missingM⁒Fl⁒(𝒦)𝐼missing𝑀subscript𝐹𝑙𝒦I\in\mathop{\mathrm{missing}}{MF}_{l}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( caligraphic_K ) be a missing face of 𝒦𝒦\mathcal{K}caligraphic_K. Then any cohom*ology class cβˆˆβ„‹lβˆ’1,βˆ—β’(𝒦)𝑐superscriptℋ𝑙1𝒦c\in\mathcal{H}^{l-1,*}(\mathcal{K})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_l - 1 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) such that ⟨c,βˆ‚Ξ”IβŸ©β‰ 0𝑐subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle\neq 0⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ β‰  0 is indecomposable.

Proof..

Let 𝒦′superscript𝒦′\mathcal{K}^{\prime}caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be the simplicial complex obtained from 𝒦𝒦\mathcal{K}caligraphic_K by filling in all missing faces of dimensionl𝑙litalic_l with simplices, so that missingM⁒Fl⁒(𝒦′)=βˆ…missing𝑀subscript𝐹𝑙superscript𝒦′\mathop{\mathrm{missing}}{MF}_{l}(\mathcal{K}^{\prime})=\varnothingroman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = βˆ… and 𝒦lβˆ’1=(𝒦′)lβˆ’1superscript𝒦𝑙1superscriptsuperscript𝒦′𝑙1\mathcal{K}^{l-1}=(\mathcal{K}^{\prime})^{l-1}caligraphic_K start_POSTSUPERSCRIPT italic_l - 1 end_POSTSUPERSCRIPT = ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_l - 1 end_POSTSUPERSCRIPT. Then the inclusion i:𝒦β†ͺ𝒦′:𝑖β†ͺ𝒦superscript𝒦′i:\mathcal{K}\hookrightarrow\mathcal{K}^{\prime}italic_i : caligraphic_K β†ͺ caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT induces a ring hom*omorphism iβˆ—:β„‹βˆ—,βˆ—β’(𝒦′)β†’β„‹βˆ—,βˆ—β’(𝒦):superscript𝑖→superscriptβ„‹superscript𝒦′superscriptℋ𝒦i^{*}:\mathcal{H}^{*,*}(\mathcal{K}^{\prime})\rightarrow\mathcal{H}^{*,*}(%\mathcal{K})italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT : caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) β†’ caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) and β„‹r,βˆ—β’(𝒦′)β‰…β„‹r,βˆ—β’(𝒦)superscriptβ„‹π‘Ÿsuperscript𝒦′superscriptβ„‹π‘Ÿπ’¦\mathcal{H}^{r,*}(\mathcal{K}^{\prime})\cong\mathcal{H}^{r,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT italic_r , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) β‰… caligraphic_H start_POSTSUPERSCRIPT italic_r , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) for r≀lβˆ’2π‘Ÿπ‘™2r\leq l-2italic_r ≀ italic_l - 2. Also, iβˆ—β’(βˆ‚Ξ”I)=0subscript𝑖subscriptΔ𝐼0i_{*}(\partial\Delta_{I})=0italic_i start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT ( βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) = 0 for I∈missingM⁒Fl⁒(𝒦)𝐼missing𝑀subscript𝐹𝑙𝒦I\in\mathop{\mathrm{missing}}{MF}_{l}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( caligraphic_K ).

Suppose c𝑐citalic_c is decomposable, that is, c=βˆ‘i=1paiβ‹…bi𝑐superscriptsubscript𝑖1𝑝⋅subscriptπ‘Žπ‘–subscript𝑏𝑖c=\sum_{i=1}^{p}a_{i}\cdot b_{i}italic_c = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Choose aiβ€²,biβ€²superscriptsubscriptπ‘Žπ‘–β€²superscriptsubscript𝑏𝑖′a_{i}^{\prime},b_{i}^{\prime}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT such that iβˆ—β’(aiβ€²)=aisuperscript𝑖superscriptsubscriptπ‘Žπ‘–β€²subscriptπ‘Žπ‘–i^{*}(a_{i}^{\prime})=a_{i}italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and iβˆ—β’(biβ€²)=bisuperscript𝑖superscriptsubscript𝑏𝑖′subscript𝑏𝑖i^{*}(b_{i}^{\prime})=b_{i}italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and define cβ€²:=βˆ‘i=1paiβ€²β‹…biβ€²assignsuperscript𝑐′superscriptsubscript𝑖1𝑝⋅superscriptsubscriptπ‘Žπ‘–β€²superscriptsubscript𝑏𝑖′c^{\prime}:=\sum_{i=1}^{p}a_{i}^{\prime}\cdot b_{i}^{\prime}italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT := βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT. Then iβˆ—β’(cβ€²)=csuperscript𝑖superscript𝑐′𝑐i^{*}(c^{\prime})=citalic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_c and

⟨c,βˆ‚Ξ”I⟩=⟨iβˆ—β’(cβ€²),βˆ‚Ξ”I⟩=⟨cβ€²,iβˆ—β’(βˆ‚Ξ”I)⟩=0.𝑐subscriptΔ𝐼superscript𝑖superscript𝑐′subscriptΔ𝐼superscript𝑐′subscript𝑖subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle=\langle i^{*}(c^{\prime}),\partial\Delta_{%I}\rangle=\langle c^{\prime},i_{*}(\partial\Delta_{I})\rangle=0.⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_i start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT ( βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) ⟩ = 0 .

This is a contradiction.∎

Theorem 4.2.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a three-dimensional simplicial sphere such that π’¦β‰ βˆ‚Ξ”4𝒦superscriptΞ”4\mathcal{K}\neq\partial\Delta^{4}caligraphic_K β‰  βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph. Then Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝒦superscript𝐻𝑀H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ), where M𝑀Mitalic_M is a connected sum of products of spheres with two spheres in each product.

Proof..

We use the notation β„‹βˆ—,βˆ—=Hβˆ—β’(𝒡𝒦)superscriptβ„‹superscript𝐻subscript𝒡𝒦\mathcal{H}^{*,*}=H^{*}(\mathcal{Z}_{\mathcal{K}})caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT = italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) and analyse possible nontrivial products in(2.1). We have β„‹k,βˆ—=0superscriptβ„‹π‘˜0\mathcal{H}^{k,*}=0caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT = 0 for kβ‰₯4π‘˜4k\geq 4italic_k β‰₯ 4 since 𝒦𝒦\mathcal{K}caligraphic_K is a three-dimensional sphere.Products of the form β„‹3,βˆ—βŠ—β„‹i,βˆ—β†’β„‹4+i,βˆ—β†’tensor-productsuperscriptβ„‹3superscriptℋ𝑖superscriptβ„‹4𝑖\mathcal{H}^{3,*}\otimes\mathcal{H}^{i,*}\to\mathcal{H}^{4+i,*}caligraphic_H start_POSTSUPERSCRIPT 3 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT 4 + italic_i , βˆ— end_POSTSUPERSCRIPT, β„‹2,βˆ—βŠ—β„‹2,βˆ—β†’β„‹5,βˆ—β†’tensor-productsuperscriptβ„‹2superscriptβ„‹2superscriptβ„‹5\mathcal{H}^{2,*}\otimes\mathcal{H}^{2,*}\to\mathcal{H}^{5,*}caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT 5 , βˆ— end_POSTSUPERSCRIPT and β„‹2,βˆ—βŠ—β„‹1,βˆ—β†’β„‹4,βˆ—β†’tensor-productsuperscriptβ„‹2superscriptβ„‹1superscriptβ„‹4\mathcal{H}^{2,*}\otimes\mathcal{H}^{1,*}\to\mathcal{H}^{4,*}caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT 4 , βˆ— end_POSTSUPERSCRIPT are therefore trivial for dimensional reasons.

Since 𝒦𝒦\mathcal{K}caligraphic_K is a 3-dimensional sphere, 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is an (m+4)π‘š4(m+4)( italic_m + 4 )-dimensional manifold. Nontrivial products H~i⁒(𝒦I)βŠ—H~2βˆ’i⁒(𝒦J)β†’H~3⁒(𝒦IβˆͺJ)β†’tensor-productsuperscript~𝐻𝑖subscript𝒦𝐼superscript~𝐻2𝑖subscript𝒦𝐽superscript~𝐻3subscript𝒦𝐼𝐽\widetilde{H}^{i}(\mathcal{K}_{I})\otimes\widetilde{H}^{2-i}(\mathcal{K}_{J})%\to\widetilde{H}^{3}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) βŠ— over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 2 - italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) β†’ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) come from PoincarΓ© duality for𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT (see[BP, Proposition4.6.6]), because H~3⁒(𝒦IβˆͺJ)superscript~𝐻3subscript𝒦𝐼𝐽\widetilde{H}^{3}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) is nonzero only when IβŠ”J=[m]square-union𝐼𝐽delimited-[]π‘šI\sqcup J=[m]italic_I βŠ” italic_J = [ italic_m ]. The PoincarΓ© duality isomorphisms H~i⁒(𝒦I)β‰…H~2βˆ’i⁒(𝒦[m]βˆ–I)superscript~𝐻𝑖subscript𝒦𝐼subscript~𝐻2𝑖subscript𝒦delimited-[]π‘šπΌ\widetilde{H}^{i}(\mathcal{K}_{I})\cong\widetilde{H}_{2-i}(\mathcal{K}_{[m]%\setminus I})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) β‰… over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT 2 - italic_i end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– italic_I end_POSTSUBSCRIPT ) (or the Alexander duality isomorphisms for the 3333-sphere𝒦𝒦\mathcal{K}caligraphic_K, see[BP, 3.4.11]) imply that the groups H~i⁒(𝒦I)superscript~𝐻𝑖subscript𝒦𝐼\widetilde{H}^{i}(\mathcal{K}_{I})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) are torsion-free for any i𝑖iitalic_i and IβŠ‚[m]𝐼delimited-[]π‘šI\subset[m]italic_I βŠ‚ [ italic_m ].

Next we prove that all multiplications of the form β„‹0,βˆ—βŠ—β„‹0,βˆ—βŸΆβ„‹1,βˆ—βŸΆtensor-productsuperscriptβ„‹0superscriptβ„‹0superscriptβ„‹1\mathcal{H}^{0,*}\otimes\mathcal{H}^{0,*}\longrightarrow\mathcal{H}^{1,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT are trivial.Assume that there are cohom*ology classes a,bβˆˆβ„‹0,βˆ—π‘Žπ‘superscriptβ„‹0a,b\in\mathcal{H}^{0,*}italic_a , italic_b ∈ caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT such that 0β‰ aβ‹…b=:c∈H~1(𝒦I)0\neq a\cdot b=:c\in\widetilde{H}^{1}(\mathcal{K}_{I})0 β‰  italic_a β‹… italic_b = : italic_c ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ). Since cβ‰ 0𝑐0c\neq 0italic_c β‰  0 there exists γ∈H1⁒(𝒦I)𝛾subscript𝐻1subscript𝒦𝐼\gamma\in H_{1}(\mathcal{K}_{I})italic_Ξ³ ∈ italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) such that ⟨c,Ξ³βŸ©β‰ 0𝑐𝛾0\langle c,\gamma\rangle\neq 0⟨ italic_c , italic_Ξ³ ⟩ β‰  0. We can write Ξ³=Ξ»1⁒γ1+β‹―+Ξ»k⁒γk𝛾subscriptπœ†1subscript𝛾1β‹―subscriptπœ†π‘˜subscriptπ›Ύπ‘˜\gamma=\lambda_{1}\gamma_{1}+\cdots+\lambda_{k}\gamma_{k}italic_Ξ³ = italic_Ξ» start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + β‹― + italic_Ξ» start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, where each Ξ³isubscript𝛾𝑖\gamma_{i}italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a simple chordless cycle in 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and Ξ»iβ‰ 0subscriptπœ†π‘–0\lambda_{i}\neq 0italic_Ξ» start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‰  0. Since 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is chordal, Ξ³i∈missingM⁒F2⁒(𝒦)subscript𝛾𝑖missing𝑀subscript𝐹2𝒦\gamma_{i}\in\mathop{\mathrm{missing}}{MF}_{2}(\mathcal{K})italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_K ). Now, 0β‰ βŸ¨c,γ⟩=βˆ‘j=1kΞ»i⁒⟨c,Ξ³i⟩0𝑐𝛾superscriptsubscript𝑗1π‘˜subscriptπœ†π‘–π‘subscript𝛾𝑖0\neq\langle c,\gamma\rangle=\sum_{j=1}^{k}\lambda_{i}\langle c,\gamma_{i}\rangle0 β‰  ⟨ italic_c , italic_Ξ³ ⟩ = βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_Ξ» start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟨ italic_c , italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟩, so ⟨c,Ξ³iβŸ©β‰ 0𝑐subscript𝛾𝑖0\langle c,\gamma_{i}\rangle\neq 0⟨ italic_c , italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟩ β‰  0 for somei𝑖iitalic_i. Hence, c𝑐citalic_c is indecomposable by Lemma4.1. A contradiction.

Finally, we prove that all multiplications of the form β„‹0,βˆ—βŠ—β„‹1,βˆ—βŸΆβ„‹2,βˆ—βŸΆtensor-productsuperscriptβ„‹0superscriptβ„‹1superscriptβ„‹2\mathcal{H}^{0,*}\otimes\mathcal{H}^{1,*}\longrightarrow\mathcal{H}^{2,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT are trivial.Assume that there exists a nontrivial product a0β‹…b1=c2β‰ 0β‹…superscriptπ‘Ž0superscript𝑏1superscript𝑐20a^{0}\cdot b^{1}=c^{2}\neq 0italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‰  0 for some a0∈H~0⁒(𝒦I)superscriptπ‘Ž0superscript~𝐻0subscript𝒦𝐼a^{0}\in\widetilde{H}^{0}(\mathcal{K}_{I})italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ), b1∈H~1⁒(KJ)superscript𝑏1superscript~𝐻1subscript𝐾𝐽b^{1}\in\widetilde{H}^{1}(K_{J})italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ), c2∈H~2⁒(𝒦IβˆͺJ)superscript𝑐2superscript~𝐻2subscript𝒦𝐼𝐽c^{2}\in\widetilde{H}^{2}(\mathcal{K}_{I\cup J})italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ). By PoincarΓ© duality there exists an element aβ€²βˆˆH~0⁒(𝒦[m]βˆ–(IβˆͺJ))superscriptπ‘Žβ€²superscript~𝐻0subscript𝒦delimited-[]π‘šπΌπ½a^{\prime}\in\widetilde{H}^{0}(\mathcal{K}_{[m]\setminus(I\cup J)})italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– ( italic_I βˆͺ italic_J ) end_POSTSUBSCRIPT ) such that 0β‰ aβ€²β‹…c2=aβ€²β‹…a0β‹…b1∈H~3⁒(𝒦)0β‹…superscriptπ‘Žβ€²superscript𝑐2β‹…superscriptπ‘Žβ€²superscriptπ‘Ž0superscript𝑏1superscript~𝐻3𝒦0\neq a^{\prime}\cdot c^{2}=a^{\prime}\cdot a^{0}\cdot b^{1}\in\widetilde{H}^{%3}(\mathcal{K})0 β‰  italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_K ). Then a0β‹…aβ€²β‰ 0β‹…superscriptπ‘Ž0superscriptπ‘Žβ€²0a^{0}\cdot a^{\prime}\neq 0italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT β‹… italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  0, so we obtain a nontrivial multiplication of the form β„‹0,βˆ—βŠ—β„‹0,βˆ—βŸΆβ„‹1,βˆ—βŸΆtensor-productsuperscriptβ„‹0superscriptβ„‹0superscriptβ„‹1\mathcal{H}^{0,*}\otimes\mathcal{H}^{0,*}\longrightarrow\mathcal{H}^{1,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT. A contradiction.

It follows that the only nontrivial multiplications in β„‹βˆ—,βˆ—β’(𝒦)superscriptℋ𝒦\mathcal{H}^{*,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) are

β„‹0,IβŠ—β„‹2,[m]βˆ–IβŸΆβ„‹3,[m]andβ„‹1,JβŠ—β„‹1,[m]βˆ–JβŸΆβ„‹3,[m],formulae-sequence⟢tensor-productsuperscriptβ„‹0𝐼superscriptβ„‹2delimited-[]π‘šπΌsuperscriptβ„‹3delimited-[]π‘šand⟢tensor-productsuperscriptβ„‹1𝐽superscriptβ„‹1delimited-[]π‘šπ½superscriptβ„‹3delimited-[]π‘š\mathcal{H}^{0,I}\otimes\mathcal{H}^{2,[m]\setminus I}\longrightarrow\mathcal{%H}^{3,[m]}\quad\text{and}\quad\mathcal{H}^{1,J}\otimes\mathcal{H}^{1,[m]%\setminus J}\longrightarrow\mathcal{H}^{3,[m]},caligraphic_H start_POSTSUPERSCRIPT 0 , italic_I end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 2 , [ italic_m ] βˆ– italic_I end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 3 , [ italic_m ] end_POSTSUPERSCRIPT and caligraphic_H start_POSTSUPERSCRIPT 1 , italic_J end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , [ italic_m ] βˆ– italic_J end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 3 , [ italic_m ] end_POSTSUPERSCRIPT ,

which arise from PoincarΓ© duality. Therefore, the ring Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is free as an abelian group with β„€β„€\mathbb{Z}blackboard_Z-basis

{1,a10,…,ak0,a11,…,al1,b11,…,bl1,b12,…,bk2,c},1subscriptsuperscriptπ‘Ž01…subscriptsuperscriptπ‘Ž0π‘˜subscriptsuperscriptπ‘Ž11…subscriptsuperscriptπ‘Ž1𝑙subscriptsuperscript𝑏11…subscriptsuperscript𝑏1𝑙subscriptsuperscript𝑏21…subscriptsuperscript𝑏2π‘˜π‘\{1,a^{0}_{1},\ldots,a^{0}_{k},a^{1}_{1},\ldots,a^{1}_{l},b^{1}_{1},\ldots,b^{%1}_{l},b^{2}_{1},\ldots,b^{2}_{k},c\},{ 1 , italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_c } ,

where a10,…,ak0βˆˆβ„‹0,βˆ—subscriptsuperscriptπ‘Ž01…subscriptsuperscriptπ‘Ž0π‘˜superscriptβ„‹0a^{0}_{1},\ldots,a^{0}_{k}\in\mathcal{H}^{0,*}italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT, a11,…,al1,b11,…,bl1βˆˆβ„‹1,βˆ—subscriptsuperscriptπ‘Ž11…subscriptsuperscriptπ‘Ž1𝑙subscriptsuperscript𝑏11…subscriptsuperscript𝑏1𝑙superscriptβ„‹1a^{1}_{1},\ldots,a^{1}_{l},b^{1}_{1},\ldots,b^{1}_{l}\in\mathcal{H}^{1,*}italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT,b12,…,bk2βˆˆβ„‹2,βˆ—subscriptsuperscript𝑏21…subscriptsuperscript𝑏2π‘˜superscriptβ„‹2b^{2}_{1},\ldots,b^{2}_{k}\in\mathcal{H}^{2,*}italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT, cβˆˆβ„‹3,m=Hm+3⁒(𝒡𝒦)𝑐superscriptβ„‹3π‘šsuperscriptπ»π‘š3subscript𝒡𝒦c\in\mathcal{H}^{3,m}=H^{m+3}(\mathcal{Z}_{\mathcal{K}})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT 3 , italic_m end_POSTSUPERSCRIPT = italic_H start_POSTSUPERSCRIPT italic_m + 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is the fundamental class, and the product is given byai0β‹…bj2=Ξ΄i⁒j⁒cβ‹…subscriptsuperscriptπ‘Ž0𝑖subscriptsuperscript𝑏2𝑗subscript𝛿𝑖𝑗𝑐a^{0}_{i}\cdot b^{2}_{j}=\delta_{ij}citalic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_Ξ΄ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_c and ap1β‹…bq1=Ξ΄p⁒q⁒cβ‹…subscriptsuperscriptπ‘Ž1𝑝subscriptsuperscript𝑏1π‘žsubscriptπ›Ώπ‘π‘žπ‘a^{1}_{p}\cdot b^{1}_{q}=\delta_{pq}citalic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = italic_Ξ΄ start_POSTSUBSCRIPT italic_p italic_q end_POSTSUBSCRIPT italic_c, where Ξ΄i⁒jsubscript𝛿𝑖𝑗\delta_{ij}italic_Ξ΄ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT is the Kronecker delta. At least one of the groups β„‹0,βˆ—superscriptβ„‹0\mathcal{H}^{0,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT and β„‹1,βˆ—superscriptβ„‹1\mathcal{H}^{1,*}caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT is nonzero, as otherwise 𝒦=βˆ‚Ξ”4𝒦superscriptΞ”4\mathcal{K}=\partial\Delta^{4}caligraphic_K = βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and 𝒡𝒦≅S9subscript𝒡𝒦superscript𝑆9\mathcal{Z}_{\mathcal{K}}\cong S^{9}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT β‰… italic_S start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT. Then Hβˆ—β’(𝒡𝒦)=β„‹βˆ—,βˆ—superscript𝐻subscript𝒡𝒦superscriptβ„‹H^{*}(\mathcal{Z}_{\mathcal{K}})=\mathcal{H}^{*,*}italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) = caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT is isomorphic to the cohom*ology ring of a connected sum of products spheres with two spheres in each product.∎

For simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K of dimension >3absent3>3> 3, the condition that 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph does not imply that Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of spheres, as shown by Example2.9. The next result gives a sufficient condition in any dimension. We say that the group β„‹l,βˆ—β’(𝒦)superscriptℋ𝑙𝒦\mathcal{H}^{l,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is generated by missing faces of 𝒦𝒦\mathcal{K}caligraphic_K if for any nonzero cβˆˆβ„‹l,βˆ—β’(𝒦)𝑐superscriptℋ𝑙𝒦c\in\mathcal{H}^{l,*}(\mathcal{K})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) there exists I∈missingM⁒Fl+1⁒(𝒦)𝐼missing𝑀subscript𝐹𝑙1𝒦I\in\mathop{\mathrm{missing}}{MF}_{l+1}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l + 1 end_POSTSUBSCRIPT ( caligraphic_K ) such that ⟨c,βˆ‚Ξ”IβŸ©β‰ 0𝑐subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle\neq 0⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ β‰  0.

Theorem 4.3.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension d𝑑ditalic_d such that π’¦β‰ βˆ‚Ξ”d+1𝒦superscriptΔ𝑑1\mathcal{K}\neq\partial\Delta^{d+1}caligraphic_K β‰  βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT italic_d + 1 end_POSTSUPERSCRIPT and the group β„‹l,βˆ—β’(𝒦)superscriptℋ𝑙𝒦\mathcal{H}^{l,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is generated by missing faces of 𝒦𝒦\mathcal{K}caligraphic_K for lβ‰€βŒŠ2⁒dβˆ’13βŒ‹π‘™2𝑑13l\leq\left\lfloor\frac{2d-1}{3}\right\rflooritalic_l ≀ ⌊ divide start_ARG 2 italic_d - 1 end_ARG start_ARG 3 end_ARG βŒ‹. Then Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres with two spheres in each product.

Proof..

We can assume that dβ‰₯2𝑑2d\geq 2italic_d β‰₯ 2, as otherwise 𝒦𝒦\mathcal{K}caligraphic_K is the boundary of polygon and the result follows from Theorem2.5.As in the proof of Theorem4.2, we analyse possible nontrivial products in(2.1).We denote q:=⌊2⁒dβˆ’13βŒ‹assignπ‘ž2𝑑13q:=\left\lfloor\frac{2d-1}{3}\right\rflooritalic_q := ⌊ divide start_ARG 2 italic_d - 1 end_ARG start_ARG 3 end_ARG βŒ‹.

We have β„‹k,βˆ—=0superscriptβ„‹π‘˜0\mathcal{H}^{k,*}=0caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT = 0 for k>dπ‘˜π‘‘k>ditalic_k > italic_d since 𝒦𝒦\mathcal{K}caligraphic_K is an d𝑑ditalic_d-dimensional sphere.Therefore, products of the form β„‹i,βˆ—βŠ—β„‹j,βˆ—β†’β„‹i+j+1,βˆ—β†’tensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\to\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT with i+jβ‰₯d𝑖𝑗𝑑i+j\geq ditalic_i + italic_j β‰₯ italic_d are trivial.

Nontrivial products or the form β„‹i,βˆ—βŠ—β„‹j,βˆ—β†’β„‹i+j+1,βˆ—β†’tensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\to\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT with i+j=dβˆ’1𝑖𝑗𝑑1i+j=d-1italic_i + italic_j = italic_d - 1 are given by H~i⁒(𝒦I)βŠ—H~dβˆ’1βˆ’i⁒(𝒦J)β†’H~d⁒(𝒦IβˆͺJ)β†’tensor-productsuperscript~𝐻𝑖subscript𝒦𝐼superscript~𝐻𝑑1𝑖subscript𝒦𝐽superscript~𝐻𝑑subscript𝒦𝐼𝐽\widetilde{H}^{i}(\mathcal{K}_{I})\otimes\widetilde{H}^{d-1-i}(\mathcal{K}_{J}%)\to\widetilde{H}^{d}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) βŠ— over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d - 1 - italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) β†’ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) and come from PoincarΓ© duality, because H~d⁒(𝒦IβˆͺJ)superscript~𝐻𝑑subscript𝒦𝐼𝐽\widetilde{H}^{d}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) is nonzero only when IβŠ”J=[m]square-union𝐼𝐽delimited-[]π‘šI\sqcup J=[m]italic_I βŠ” italic_J = [ italic_m ].We prove by contradiction that the groups H~i⁒(𝒦I)superscript~𝐻𝑖subscript𝒦𝐼\widetilde{H}^{i}(\mathcal{K}_{I})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) are torsion-free for i≀qπ‘–π‘ži\leq qitalic_i ≀ italic_q. Assume that there is a cocycle 0β‰ cβˆˆβ„‹i,βˆ—β’(𝒦)0𝑐superscriptℋ𝑖𝒦0\neq c\in\mathcal{H}^{i,*}(\mathcal{K})0 β‰  italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) and a nonzero integer kπ‘˜kitalic_k such that kβ‹…c=0β‹…π‘˜π‘0k\cdot c=0italic_k β‹… italic_c = 0. Let c~~𝑐\tilde{c}over~ start_ARG italic_c end_ARG be a representing cochain for c𝑐citalic_c, then kβ‹…c~β‹…π‘˜~𝑐k\cdot\tilde{c}italic_k β‹… over~ start_ARG italic_c end_ARG is a coboundary and kβ‹…c~=d⁒b~β‹…π‘˜~𝑐𝑑~𝑏k\cdot\tilde{c}=d\tilde{b}italic_k β‹… over~ start_ARG italic_c end_ARG = italic_d over~ start_ARG italic_b end_ARG for some cochain b~~𝑏\tilde{b}over~ start_ARG italic_b end_ARG. By assumption there exists I∈missingM⁒Fi+1⁒(𝒦)𝐼missing𝑀subscript𝐹𝑖1𝒦I\in\mathop{\mathrm{missing}}{MF}_{i+1}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ( caligraphic_K ) such that ⟨c,βˆ‚Ξ”IβŸ©β‰ 0𝑐subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle\neq 0⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ β‰  0, hence,

0β‰ kβ‹…βŸ¨c,βˆ‚Ξ”I⟩=⟨kβ‹…c~,βˆ‚Ξ”I⟩=⟨d⁒b~,βˆ‚Ξ”I⟩=⟨b~,βˆ‚(βˆ‚Ξ”I)⟩=00β‹…π‘˜π‘subscriptΞ”πΌβ‹…π‘˜~𝑐subscriptΔ𝐼𝑑~𝑏subscriptΔ𝐼~𝑏subscriptΔ𝐼00\neq k\cdot\langle c,\partial\Delta_{I}\rangle=\langle k\cdot\tilde{c},%\partial\Delta_{I}\rangle=\langle d\tilde{b},\partial\Delta_{I}\rangle=\langle%\tilde{b},\partial(\partial\Delta_{I})\rangle=00 β‰  italic_k β‹… ⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_k β‹… over~ start_ARG italic_c end_ARG , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_d over~ start_ARG italic_b end_ARG , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ over~ start_ARG italic_b end_ARG , βˆ‚ ( βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) ⟩ = 0

and we get a contradiction. Now the Alexander duality isomorphisms H~i⁒(𝒦J)β‰…H~dβˆ’1βˆ’i⁒(𝒦[m]βˆ–J)superscript~𝐻𝑖subscript𝒦𝐽subscript~𝐻𝑑1𝑖subscript𝒦delimited-[]π‘šπ½\widetilde{H}^{i}(\mathcal{K}_{J})\cong\widetilde{H}_{d-1-i}(\mathcal{K}_{[m]%\setminus J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) β‰… over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_d - 1 - italic_i end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– italic_J end_POSTSUBSCRIPT ) imply that the hom*ology groups H~j⁒(𝒦J)subscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}_{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) are torsion-free for jβ‰₯dβˆ’1βˆ’q𝑗𝑑1π‘žj\geq d-1-qitalic_j β‰₯ italic_d - 1 - italic_q. Since dβˆ’1βˆ’q≀q𝑑1π‘žπ‘žd-1-q\leq qitalic_d - 1 - italic_q ≀ italic_q, we obtain that H~j⁒(𝒦J)subscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}_{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) is torsion-free for jβ‰₯qπ‘—π‘žj\geq qitalic_j β‰₯ italic_q, whereas H~j⁒(𝒦J)superscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}^{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) is torsion-free for j≀qπ‘—π‘žj\leq qitalic_j ≀ italic_q. By the universal coefficient theorem we conclude that the groups H~j⁒(𝒦J)superscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}^{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) are torsion-free for all j𝑗jitalic_j andJ𝐽Jitalic_J.

All products of the form β„‹i,βˆ—βŠ—β„‹j,βˆ—βŸΆβ„‹i+j+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\longrightarrow\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT are trivial for i+j<qπ‘–π‘—π‘ži+j<qitalic_i + italic_j < italic_q, since any l𝑙litalic_l-dimensional cohom*ology class with l≀qπ‘™π‘žl\leq qitalic_l ≀ italic_q is indecomposable by Lemma4.1.

Finally, we prove that all products of the form β„‹i,βˆ—βŠ—β„‹j,βˆ—βŸΆβ„‹i+j+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\longrightarrow\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT are trivial for q≀i+j≀dβˆ’2π‘žπ‘–π‘—π‘‘2q\leq i+j\leq d-2italic_q ≀ italic_i + italic_j ≀ italic_d - 2. Suppose there are classes aβˆˆβ„‹i,Iπ‘Žsuperscriptℋ𝑖𝐼a\in\mathcal{H}^{i,I}italic_a ∈ caligraphic_H start_POSTSUPERSCRIPT italic_i , italic_I end_POSTSUPERSCRIPT and bβˆˆβ„‹j,J𝑏superscriptℋ𝑗𝐽b\in\mathcal{H}^{j,J}italic_b ∈ caligraphic_H start_POSTSUPERSCRIPT italic_j , italic_J end_POSTSUPERSCRIPT with q≀i+j≀dβˆ’2π‘žπ‘–π‘—π‘‘2q\leq i+j\leq d-2italic_q ≀ italic_i + italic_j ≀ italic_d - 2 such that 0β‰ aβ‹…b=:cβˆˆβ„‹i+j+1,IβˆͺJ0\neq a\cdot b=:c\in\mathcal{H}^{i+j+1,I\cup J}0 β‰  italic_a β‹… italic_b = : italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , italic_I βˆͺ italic_J end_POSTSUPERSCRIPT. Without loss of generality we assume that i≀j𝑖𝑗i\leq jitalic_i ≀ italic_j. Then there exists an element aβ€²βˆˆH~dβˆ’iβˆ’jβˆ’2⁒(𝒦[m]βˆ–(IβˆͺJ))superscriptπ‘Žβ€²superscript~𝐻𝑑𝑖𝑗2subscript𝒦delimited-[]π‘šπΌπ½a^{\prime}\in\widetilde{H}^{d-i-j-2}(\mathcal{K}_{[m]\setminus(I\cup J)})italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d - italic_i - italic_j - 2 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– ( italic_I βˆͺ italic_J ) end_POSTSUBSCRIPT ) such that 0β‰ aβ€²β‹…c=aβ€²β‹…aβ‹…b∈H~d⁒(𝒦)0β‹…superscriptπ‘Žβ€²π‘β‹…superscriptπ‘Žβ€²π‘Žπ‘superscript~𝐻𝑑𝒦0\neq a^{\prime}\cdot c=a^{\prime}\cdot a\cdot b\in\widetilde{H}^{d}(\mathcal{%K})0 β‰  italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_c = italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_a β‹… italic_b ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( caligraphic_K ) by PoincarΓ© duality. Therefore, aβ‹…aβ€²β‰ 0β‹…π‘Žsuperscriptπ‘Žβ€²0a\cdot a^{\prime}\neq 0italic_a β‹… italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  0 and so we obtain a nontrivial product of the form β„‹i,βˆ—βŠ—β„‹k,βˆ—βŸΆβ„‹i+k+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptβ„‹π‘˜superscriptβ„‹π‘–π‘˜1\mathcal{H}^{i,*}\otimes\mathcal{H}^{k,*}\longrightarrow\mathcal{H}^{i+k+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_k + 1 , βˆ— end_POSTSUPERSCRIPT for k=dβˆ’iβˆ’jβˆ’2π‘˜π‘‘π‘–π‘—2k=d-i-j-2italic_k = italic_d - italic_i - italic_j - 2. By assumption, q≀i+j≀2⁒jπ‘žπ‘–π‘—2𝑗q\leq i+j\leq 2jitalic_q ≀ italic_i + italic_j ≀ 2 italic_j and q>2⁒dβˆ’13βˆ’1π‘ž2𝑑131q>\frac{2d-1}{3}-1italic_q > divide start_ARG 2 italic_d - 1 end_ARG start_ARG 3 end_ARG - 1, hence,

i+k=dβˆ’jβˆ’2≀dβˆ’2βˆ’q2<q.π‘–π‘˜π‘‘π‘—2𝑑2π‘ž2π‘ži+k=d-j-2\leq d-2-\frac{q}{2}<q.italic_i + italic_k = italic_d - italic_j - 2 ≀ italic_d - 2 - divide start_ARG italic_q end_ARG start_ARG 2 end_ARG < italic_q .

Thus, aβ€²β‹…aβ‹…superscriptπ‘Žβ€²π‘Ža^{\prime}\cdot aitalic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_a is a product of the form β„‹i,βˆ—βŠ—β„‹k,βˆ—βŸΆβ„‹i+k+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptβ„‹π‘˜superscriptβ„‹π‘–π‘˜1\mathcal{H}^{i,*}\otimes\mathcal{H}^{k,*}\longrightarrow\mathcal{H}^{i+k+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_k + 1 , βˆ— end_POSTSUPERSCRIPT with i+k<qπ‘–π‘˜π‘ži+k<qitalic_i + italic_k < italic_q, so it must be trivial. A contradiction.

We obtain that the only nontrivial products in β„‹βˆ—,βˆ—β’(𝒦)superscriptℋ𝒦\mathcal{H}^{*,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) arise from PoincarΓ© duality. It follows that the ring Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres with two spheres in each product.∎

The next theorem extends the result of Theorem4.2 to a complete characterisation of three-dimensional spheres 𝒦𝒦\mathcal{K}caligraphic_K such that Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres.

Theorem 4.4.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a three-dimensional simplicial sphere. Then Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres if and only if one of the following conditions is satisfied:

  • (a)

    𝒦=S0βˆ—S0βˆ—S0βˆ—S0𝒦superscript𝑆0superscript𝑆0superscript𝑆0superscript𝑆0\mathcal{K}=S^{0}*S^{0}*S^{0}*S^{0}caligraphic_K = italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (the boundary of a 4444-dimensional cross-polytope);

  • (b)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph;

  • (c)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has exactly two missing edges which form a chordless 4444-cycle.

Proof..

First we prove the β€œonly if” statement. If 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph, then (b) is satisfied. Otherwise, by Lemma2.10 the missing edges I1,…,Irsubscript𝐼1…subscriptπΌπ‘ŸI_{1},\ldots,I_{r}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT of 𝒦𝒦\mathcal{K}caligraphic_K are pairwise disjoint and 𝒦I1βŠ”β‹―βŠ”Ir=𝒦I1βˆ—β‹―βˆ—π’¦Irsubscript𝒦square-unionsubscript𝐼1β‹―subscriptπΌπ‘Ÿsubscript𝒦subscript𝐼1β‹―subscript𝒦subscriptπΌπ‘Ÿ\mathcal{K}_{I_{1}\sqcup\cdots\sqcup I_{r}}=\mathcal{K}_{I_{1}}*\cdots*%\mathcal{K}_{I_{r}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT. We have r≀4π‘Ÿ4r\leq 4italic_r ≀ 4, since dim𝒦=3dimension𝒦3\dim\mathcal{K}=3roman_dim caligraphic_K = 3.

If r=4π‘Ÿ4r=4italic_r = 4, then 𝒦=𝒦I1βˆ—β‹―βˆ—π’¦I4𝒦subscript𝒦subscript𝐼1β‹―subscript𝒦subscript𝐼4\mathcal{K}=\mathcal{K}_{I_{1}}*\cdots*\mathcal{K}_{I_{4}}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, so that (a) holds.

If r=3π‘Ÿ3r=3italic_r = 3, then 𝒦I1βŠ”I2βŠ”I3=𝒦I1βˆ—π’¦I2βˆ—π’¦I3subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3subscript𝒦subscript𝐼1subscript𝒦subscript𝐼2subscript𝒦subscript𝐼3\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{3}}=\mathcal{K}_{I_{1}}*\mathcal{K}_{I%_{2}}*\mathcal{K}_{I_{3}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a two-dimensional simplicial sphere. We have H~0⁒(π’¦βˆ–π’¦I1βŠ”I2βŠ”I3)β‰…H~2⁒(𝒦I1βŠ”I2βŠ”I3)β‰…β„€subscript~𝐻0𝒦subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3superscript~𝐻2subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3β„€\widetilde{H}_{0}(\mathcal{K}\setminus\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{%3}})\cong\widetilde{H}^{2}(\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{3}})\cong%\mathbb{Z}over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( caligraphic_K βˆ– caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) β‰… over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) β‰… blackboard_Z by Alexander duality. Hence, π’¦βˆ–π’¦I1βŠ”I2βŠ”I3𝒦subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3\mathcal{K}\setminus\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{3}}caligraphic_K βˆ– caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is not connected. It follows that there is at least one more missing edge in 𝒦𝒦\mathcal{K}caligraphic_K besides I1,I2,I3subscript𝐼1subscript𝐼2subscript𝐼3I_{1},I_{2},I_{3}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. A contradiction.

If r=2π‘Ÿ2r=2italic_r = 2, then (c) holds.

If r=1π‘Ÿ1r=1italic_r = 1, then 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is in fact a chordal graph, since any chordless cycle with more than three vertices has at least two missing edges. Hence, (b) holds.

Now we prove the β€œif” statement. If (a) holds, then 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is a product of spheres. If (b) holds, then Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres by Theorem4.2. Suppose (c) holds. Then β„‹0,βˆ—β’(𝒦)=β„€β’βŸ¨a1,a2⟩superscriptβ„‹0𝒦℀subscriptπ‘Ž1subscriptπ‘Ž2\mathcal{H}^{0,*}(\mathcal{K})=\mathbb{Z}\langle a_{1},a_{2}\ranglecaligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) = blackboard_Z ⟨ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩, where a1subscriptπ‘Ž1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and a2subscriptπ‘Ž2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT correspond to the two missing edges of 𝒦𝒦\mathcal{K}caligraphic_K, and a1β‹…a2β‰ 0β‹…subscriptπ‘Ž1subscriptπ‘Ž20a_{1}\cdot a_{2}\neq 0italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‰  0. We use the same argument as in the proof of Theorem4.2 with one exception: there is one nontrivial product of the form β„‹0,βˆ—β’(𝒦)βŠ—β„‹0,βˆ—β’(𝒦)βŠ—β„‹1,βˆ—β’(𝒦)βŸΆβ„‹3,βˆ—β’(𝒦)⟢tensor-producttensor-productsuperscriptβ„‹0𝒦superscriptβ„‹0𝒦superscriptβ„‹1𝒦superscriptβ„‹3𝒦\mathcal{H}^{0,*}(\mathcal{K})\otimes\mathcal{H}^{0,*}(\mathcal{K})\otimes%\mathcal{H}^{1,*}(\mathcal{K})\longrightarrow\mathcal{H}^{3,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) βŠ— caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) ⟢ caligraphic_H start_POSTSUPERSCRIPT 3 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ). Namely, a1β‹…a2β‹…b↦cmaps-toβ‹…subscriptπ‘Ž1subscriptπ‘Ž2𝑏𝑐a_{1}\cdot a_{2}\cdot b\mapsto citalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹… italic_b ↦ italic_c, where b𝑏bitalic_b is PoincarΓ© dual to a1β‹…a2β‹…subscriptπ‘Ž1subscriptπ‘Ž2a_{1}\cdot a_{2}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and c𝑐citalic_c is the fundamental class of𝒦𝒦\mathcal{K}caligraphic_K. All other nontrivial products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) arise from PoincarΓ© duality. Thus the ring Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is generated by elements {a1,a2,b,c,xi,yi:i=1,2,…,N}conditional-setsubscriptπ‘Ž1subscriptπ‘Ž2𝑏𝑐subscriptπ‘₯𝑖subscript𝑦𝑖𝑖12…𝑁\{a_{1},a_{2},b,c,x_{i},y_{i}\colon i=1,2,\ldots,N\}{ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_b , italic_c , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : italic_i = 1 , 2 , … , italic_N }, where xi,yiβˆˆβ„‹1,βˆ—β’(𝒦)subscriptπ‘₯𝑖subscript𝑦𝑖superscriptβ„‹1𝒦x_{i},y_{i}\in\mathcal{H}^{1,*}(\mathcal{K})italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ), with the following multiplication rules: a1β‹…a2β‹…b=cβ‹…subscriptπ‘Ž1subscriptπ‘Ž2𝑏𝑐a_{1}\cdot a_{2}\cdot b=citalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹… italic_b = italic_c, xiβ‹…yi=cβ‹…subscriptπ‘₯𝑖subscript𝑦𝑖𝑐x_{i}\cdot y_{i}=citalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_c for i=1,2,…,N𝑖12…𝑁i=1,2,\ldots,Nitalic_i = 1 , 2 , … , italic_N, and all other products of generators are zero. Clearly, Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres.∎

Remark.

Note that under condition (c) of Theorem4.4 we have Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝒦superscript𝐻𝑀H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ), where M𝑀Mitalic_M is a connected sum of products of spheres in which one of the summands is a product of three spheres. The first example of such a simplicial sphere 𝒦𝒦\mathcal{K}caligraphic_K was constructed in[FCMW]. Later it was shown in[I] that the corresponding moment-angle manifold 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is diffeomorphic toM𝑀Mitalic_M.

Remark.

It can be shown that if 𝒦𝒦\mathcal{K}caligraphic_K is a three-dimensional simplicial sphere such that 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph, then all higher Massey products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) are trivial. This implies that a three-dimensional simplicial sphere π’¦β‰ βˆ‚Ξ”4𝒦superscriptΞ”4\mathcal{K}\neq\partial\Delta^{4}caligraphic_K β‰  βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT is minimally non-Golod if and only if 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph. We elaborate on this in a subsequent paper.

References

  • [BM]Bosio, FrΓ©dΓ©ric; Meersseman, Laurent.Real quadrics in 𝐂nsuperscript𝐂𝑛\mathbf{C}^{n}bold_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, complex manifolds and convex polytopes. Acta Math. 197 (2006), no.1, 53–127.
  • [BE]Buchstaber, Victor; Erokhovets, Nikolay.Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes. Izv. Ross. Akad. Nauk Ser. Mat.81(2017), no.5, 15–91 (Russian).Izvestiya: Mathematics81 (2017), no.5, 901-972 (English translation).
  • [BP]Buchstaber, Victor; Panov, Taras.Toric Topology.Math. Surveys Monogr.,204,Amer. Math. Soc., Providence, RI, 2015.
  • [FCMW]Fan, Feifei Fan; Chen, Liman; Ma, Jun; Wang, Xiangjun.Moment-angle manifolds and connected sums of sphere products.Osaka J. Math.53 (2016), no.1, 31–45.
  • [FG]Fulkerson, Delbert; Gross, Oliver.Incidence matrices and interval graphs.Pacific J. Math15, no.3 (1965), 835–855.
  • [GL]Gitler, Samuel; LΓ³pez de Medrano, Santiago.Intersections of quadrics, moment-angle manifolds and connected sums. Geom. Topol.17 (2013), no.3, 1497–1534.
  • [I]Iriye, Kouyemon. On the moment-angle manifold constructed by Fan, Chen, Ma and Wang. Osaka J. Math.55 (2018), no.4, 587–593.
  • [L]Limonchenko, Ivan.Stanley–Reisner rings of generalized truncation polytopes and their moment-angle manifolds. Tr. Mat. Inst. Steklova286 (2014), 207–218 (Russian).Proc. Steklov Inst. Math.286 (2014), no.1, 188–197 (English translation).
  • [M]McGavran, Dennis.Adjacent connected sums and torus actions. Trans. Amer. Math. Soc.251 (1979), 235–254.
Moment-angle manifolds corresponding to three-dimensional simplicial spheres, chordality and connected sums of products of spheres (2024)
Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 6303

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.