Moment-angle manifolds corresponding to three-dimensional simplicial spheres, chordality and connected sums of products of spheres (2024)

Victoria OganisianDepartment of Mathematics and Mechanics, MoscowState University, Russia;
National Research University Higher School of Economics, Moscow, Russia
potchtovy_jashik@mail.ru
andTaras PanovDepartment of Mathematics and Mechanics, MoscowState University, Russia;
National Research University Higher School of Economics, Moscow, Russia
tpanov@mech.math.msu.su

Abstract.

We prove that the moment-angle complex 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT corresponding to a 3333-dimensional simplicial sphere 𝒦𝒦\mathcal{K}caligraphic_K has the cohom*ology ring isomorphic to the cohom*ology ring of a connected sum of products of spheres if and only if either (a) 𝒦𝒦\mathcal{K}caligraphic_K is the boundary of a 4444-dimensional cross-polytope, or (b) the one-skeleton of 𝒦𝒦\mathcal{K}caligraphic_K is a chordal graph, or (c) there are only two missing edges in 𝒦𝒦\mathcal{K}caligraphic_K and they form a chordless 4444-cycle. For simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K of arbitrary dimension, we obtain a sufficient condition for the ring isomorphism Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝒦superscript𝐻𝑀H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ) where M𝑀Mitalic_M is a connected sum of products of spheres.

2020 Mathematics Subject Classification:

57S12, 57N65

This work was carried out within the project β€œMirror Laboratories” of HSE University, Russian Federation. Victoria Oganisian is supported by a stipend from the Theoretical Physics and Mathematics Advancement Foundation β€œBASIS”

1. Introduction

The moment-angle complex is a topological space (a CW complex) with a torus action that features in toric topology and hom*otopy theory of polyhedral products[BP]. The topology of a moment-angle complex 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is determined by the combinatorics of the corresponding simplicial complex𝒦𝒦\mathcal{K}caligraphic_K.If 𝒦𝒦\mathcal{K}caligraphic_K is the nerve complex of a simple polytope P𝑃Pitalic_P, then the corresponding moment-angle complex, which is denoted by 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT, is a smooth manifold.

There are several different geometric constructions of moment-angle manifolds enriching their topology with remarkable and peculiar geometric structures. One of them arises in holomorphic dynamics, where the moment-angle manifold 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT appears as the leaf space of a holomorphic foliation on an open subset of a complex space, and is diffeomorphic to a nondegenerate intersection of Hermitian quadrics[BM], [BP, Chapter6]. All early examples of moment-angle manifolds appearing in this context where diffeomorphic to connected sums of products of spheres. This is the case, for example, when P𝑃Pitalic_P is two-dimensional (a polygon). From the description of the cohom*ology ring of 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT it became clear that the topology of moment-angle manifolds in general is much more complicated than that of a connected sum of sphere products; for instance, Hβˆ—β’(𝒡P)superscript𝐻subscript𝒡𝑃H^{*}(\mathcal{Z}_{P})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) can have arbitrary additive torsion or nontrivial higher Massey products[BP, Chapter4].

Nevertheless, the question remained of identifying the class of simple polytopes P𝑃Pitalic_P (or more generally, simplicial spheres𝒦𝒦\mathcal{K}caligraphic_K) for which the moment-angle manifold 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is homeomorphic to a connected sum of products of spheres. This question is also interesting from the combinatorial and hom*otopy-theoretic points of view, as it is related to the conditions for the minimal non-Golodness of 𝒦𝒦\mathcal{K}caligraphic_K and the chordality of its one-skeleton. For three-dimensional polytopes P𝑃Pitalic_P (or two-dimensional spheres 𝒦𝒦\mathcal{K}caligraphic_K), it was proved in[BM, Proposition11.6] that 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is diffeomorphic to a connected sum of products of spheres if and only if P𝑃Pitalic_P is obtained from the 3-simplex by consecutively cutting off some l𝑙litalic_l vertices. This characterisation can be extended by adding two more equivalent conditions, the chordality and the minimal non-Golodness (see Proposition3.1):

Proposition.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a two-dimensional simplicial sphere and let P𝑃Pitalic_P be the a three-dimensional simple polytope such that 𝒦=𝒦P𝒦subscript𝒦𝑃\mathcal{K}=\mathcal{K}_{P}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. Suppose that P𝑃Pitalic_P is not a cube. The following conditions are equivalent:

  • (a)

    P𝑃Pitalic_P is obtained from the simplex Ξ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT by iterating the vertex cut operation, i. e. Pβˆ—superscript𝑃P^{*}italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a stacked polytope;

  • (b)

    𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is diffeomorphic to a connected sum of products of spheres;

  • (c)

    Hβˆ—β’(𝒡P)superscript𝐻subscript𝒡𝑃H^{*}(\mathcal{Z}_{P})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres;

  • (d)

    the one-dimensional skeleton of the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a chordal graph;

  • (e)

    𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is minimally non-Golod, unless P=Ξ”3𝑃superscriptΞ”3P=\Delta^{3}italic_P = roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

For three-dimensional simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K (including the nerve complexes of four-dimensional simple polytopes) we characterise the moment-angle manifolds 𝒡Ksubscript𝒡𝐾\mathcal{Z}_{K}caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT with the cohom*ology ring isomorphic to the cohom*ology ring of a connected sum of products of spheres (see Theorem4.4):

Theorem.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a three-dimensional simplicial sphere. There is a ring isomorphism Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres if and only if one of the following conditions is satisfied:

  • (a)

    𝒦=S0βˆ—S0βˆ—S0βˆ—S0𝒦superscript𝑆0superscript𝑆0superscript𝑆0superscript𝑆0\mathcal{K}=S^{0}*S^{0}*S^{0}*S^{0}caligraphic_K = italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (the boundary of a 4444-dimensional cross-polytope);

  • (b)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph;

  • (c)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has exactly two missing edges which form a chordless 4444-cycle.

We conjecture that under each of the conditions (b) and (c) above the moment-angle manifold 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is homeomorphic to a connected sum of products of spheres. Under condition (c) we have Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where one of the summands Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of three spheres. The first example of such 𝒦𝒦\mathcal{K}caligraphic_K was constucted in[FCMW].

When dimPβ‰₯5dimension𝑃5\dim P\geq 5roman_dim italic_P β‰₯ 5, the chordality of 𝒦P1subscriptsuperscript𝒦1𝑃\mathcal{K}^{1}_{P}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT does not imply that Hβˆ—β’(𝒡P)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝑃superscript𝐻𝑀H^{*}(\mathcal{Z}_{P})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ) where M𝑀Mitalic_M is a connected sum of products of spheres, see Example2.9. A stronger sufficient condition valid for simplicial spheres of arbitrary dimension is given in Theorem4.3.

2. Preliminaries

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial complex on the set [m]={1,…,m}delimited-[]π‘š1β€¦π‘š[m]=\{1,\ldots,m\}[ italic_m ] = { 1 , … , italic_m }. We assume that 𝒦𝒦\mathcal{K}caligraphic_K contains an empty set βˆ…\varnothingβˆ… and all one element subsets {i}βŠ‚[m]𝑖delimited-[]π‘š\{i\}\subset[m]{ italic_i } βŠ‚ [ italic_m ]. The dimension of a simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K is the maximal cardinality of its simplices minus one.

We denote the full subcomplex of 𝒦𝒦\mathcal{K}caligraphic_K on a vertex set J={j1,…,jk}βŠ‚[m]𝐽subscript𝑗1…subscriptπ‘—π‘˜delimited-[]π‘šJ=\{j_{1},\ldots,j_{k}\}\subset[m]italic_J = { italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } βŠ‚ [ italic_m ] by 𝒦Jsubscript𝒦𝐽\mathcal{K}_{J}caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT or by 𝒦{j1,…,jk}subscript𝒦subscript𝑗1…subscriptπ‘—π‘˜\mathcal{K}_{\{j_{1},\ldots,j_{k}\}}caligraphic_K start_POSTSUBSCRIPT { italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } end_POSTSUBSCRIPT.

The moment-angle complex 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT corresponding to 𝒦𝒦\mathcal{K}caligraphic_K is defined as follows (see [BP, Β§4.1]):

𝒡𝒦=⋃IβŠ‚π’¦β’(∏i∈I⁒D2Γ—βˆiβˆ‰I⁒S1)βŠ‚βˆi=1mD2.subscript𝒡𝒦𝐼𝒦𝑖𝐼productsuperscript𝐷2𝑖𝐼productsuperscript𝑆1superscriptsubscriptproduct𝑖1π‘šsuperscript𝐷2\mathcal{Z}_{\mathcal{K}}=\underset{I\subset\mathcal{K}}{\bigcup}\Bigl{(}%\underset{i\in I}{\prod}D^{2}\times\underset{i\notin I}{\prod}S^{1}\Bigr{)}%\subset\prod_{i=1}^{m}D^{2}\,.caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT = start_UNDERACCENT italic_I βŠ‚ caligraphic_K end_UNDERACCENT start_ARG ⋃ end_ARG ( start_UNDERACCENT italic_i ∈ italic_I end_UNDERACCENT start_ARG ∏ end_ARG italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Γ— start_UNDERACCENT italic_i βˆ‰ italic_I end_UNDERACCENT start_ARG ∏ end_ARG italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) βŠ‚ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .
Lemma 2.1.

If 𝒦Jsubscript𝒦𝐽\mathcal{K}_{J}caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT is a full subcomplex of 𝒦𝒦\mathcal{K}caligraphic_K, then 𝒡𝒦Jsubscript𝒡subscript𝒦𝐽\mathcal{Z}_{\mathcal{K}_{J}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a retract of 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT, and Hβˆ—β’(𝒡𝒦J)superscript𝐻subscript𝒡subscript𝒦𝐽H^{*}(\mathcal{Z}_{\mathcal{K}_{J}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) is a subring of Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ).

Proof..

Let i:𝒡𝒦β†ͺ(D2)m:𝑖β†ͺsubscript𝒡𝒦superscriptsuperscript𝐷2π‘ši\colon\mathcal{Z}_{\mathcal{K}}\hookrightarrow(D^{2})^{m}italic_i : caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT β†ͺ ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT be canonical inclusion, and let q:(D2)mβ†’(D2)|J|:π‘žβ†’superscriptsuperscript𝐷2π‘šsuperscriptsuperscript𝐷2𝐽q\colon(D^{2})^{m}\rightarrow(D^{2})^{|J|}italic_q : ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT β†’ ( italic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT | italic_J | end_POSTSUPERSCRIPT be the map that omits the coordinates corresponding to [m]βˆ–Jdelimited-[]π‘šπ½[m]\setminus J[ italic_m ] βˆ– italic_J. Then r=q∘i:𝒡𝒦→𝒡𝒦J:π‘Ÿπ‘žπ‘–β†’subscript𝒡𝒦subscript𝒡subscript𝒦𝐽r=q\circ i\colon\mathcal{Z}_{\mathcal{K}}\rightarrow\mathcal{Z}_{\mathcal{K}_{%J}}italic_r = italic_q ∘ italic_i : caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT β†’ caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT is the required retraction, and it induces an injective hom*omorphism Hβˆ—β’(𝒡𝒦J)β†’Hβˆ—β’(𝒡𝒦)β†’superscript𝐻subscript𝒡subscript𝒦𝐽superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}_{J}})\to H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) β†’ italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) in cohom*ology.∎

Theorem 2.2 ([BP, Theorem 4.5.8]).

There are isomorphisms of groups

Hl⁒(𝒡𝒦)≅⨁JβŠ‚[m]⁒H~lβˆ’|J|βˆ’1⁒(𝒦J)superscript𝐻𝑙subscript𝒡𝒦𝐽delimited-[]π‘šdirect-sumsuperscript~𝐻𝑙𝐽1subscript𝒦𝐽H^{l}(\mathcal{Z}_{\mathcal{K}})\cong\underset{J\subset[m]}{\bigoplus}%\widetilde{H}^{l-|J|-1}(\mathcal{K}_{J})italic_H start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… start_UNDERACCENT italic_J βŠ‚ [ italic_m ] end_UNDERACCENT start_ARG ⨁ end_ARG over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l - | italic_J | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT )

These isomorphisms combine to form a ring isomorphism Hβˆ—β’(𝒡𝒦)≅⨁JβŠ‚[m]⁒H~βˆ—β’(𝒦J)superscript𝐻subscript𝒡𝒦𝐽delimited-[]π‘šdirect-sumsuperscript~𝐻subscript𝒦𝐽H^{*}(\mathcal{Z}_{\mathcal{K}})\cong\underset{J\subset[m]}{\bigoplus}%\widetilde{H}^{*}(\mathcal{K}_{J})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… start_UNDERACCENT italic_J βŠ‚ [ italic_m ] end_UNDERACCENT start_ARG ⨁ end_ARG over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ), where the ring structure on the right hand side is given by the canonical maps

Hkβˆ’|I|βˆ’1⁒(𝒦I)βŠ—Hlβˆ’|J|βˆ’1⁒(𝒦J)⟢Hk+lβˆ’|I|βˆ’|J|βˆ’1⁒(𝒦IβˆͺJ),⟢tensor-productsuperscriptπ»π‘˜πΌ1subscript𝒦𝐼superscript𝐻𝑙𝐽1subscript𝒦𝐽superscriptπ»π‘˜π‘™πΌπ½1subscript𝒦𝐼𝐽H^{k-|I|-1}(\mathcal{K}_{I})\otimes H^{l-|J|-1}(\mathcal{K}_{J})%\longrightarrow H^{k+l-|I|-|J|-1}(\mathcal{K}_{I\cup J})\,,italic_H start_POSTSUPERSCRIPT italic_k - | italic_I | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) βŠ— italic_H start_POSTSUPERSCRIPT italic_l - | italic_J | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) ⟢ italic_H start_POSTSUPERSCRIPT italic_k + italic_l - | italic_I | - | italic_J | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) ,

which are induced by simplicial maps 𝒦IβˆͺJ→𝒦Iβˆ—π’¦Jβ†’subscript𝒦𝐼𝐽subscript𝒦𝐼subscript𝒦𝐽\mathcal{K}_{I\cup J}\rightarrow\mathcal{K}_{I}*\mathcal{K}_{J}caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT β†’ caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT for I∩J=βˆ…πΌπ½I\cap J=\varnothingitalic_I ∩ italic_J = βˆ… and zero otherwise.

We denote

β„‹l,J=H~l⁒(𝒦J),β„‹βˆ—,J=H~βˆ—β’(𝒦J)andβ„‹l,βˆ—=⨁JβŠ‚[m]⁒H~l⁒(𝒦J).formulae-sequencesuperscriptℋ𝑙𝐽superscript~𝐻𝑙subscript𝒦𝐽formulae-sequencesuperscriptℋ𝐽superscript~𝐻subscript𝒦𝐽andsuperscriptℋ𝑙𝐽delimited-[]π‘šdirect-sumsuperscript~𝐻𝑙subscript𝒦𝐽\mathcal{H}^{l,J}=\widetilde{H}^{l}(\mathcal{K}_{J}),\quad\mathcal{H}^{*,J}=%\widetilde{H}^{*}(\mathcal{K}_{J})\quad\text{and}\quad\mathcal{H}^{l,*}=%\underset{J\subset[m]}{\bigoplus}\widetilde{H}^{l}(\mathcal{K}_{J}).caligraphic_H start_POSTSUPERSCRIPT italic_l , italic_J end_POSTSUPERSCRIPT = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) , caligraphic_H start_POSTSUPERSCRIPT βˆ— , italic_J end_POSTSUPERSCRIPT = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) and caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT = start_UNDERACCENT italic_J βŠ‚ [ italic_m ] end_UNDERACCENT start_ARG ⨁ end_ARG over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) .

The ring structure in Hβˆ—β’(𝒡𝒦)=β„‹βˆ—,βˆ—β’(𝒦)superscript𝐻subscript𝒡𝒦superscriptℋ𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})=\mathcal{H}^{*,*}(\mathcal{K})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) = caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is given by the maps

(2.1)β„‹k,IβŠ—β„‹l,JβŸΆβ„‹k+l+1,IβŠ”J,k,lβ‰₯0,I∩J=βˆ….formulae-sequence⟢tensor-productsuperscriptβ„‹π‘˜πΌsuperscriptℋ𝑙𝐽superscriptβ„‹π‘˜π‘™1square-unionπΌπ½π‘˜formulae-sequence𝑙0𝐼𝐽\mathcal{H}^{k,I}\otimes\mathcal{H}^{l,J}\longrightarrow\mathcal{H}^{k+l+1,I%\sqcup J},\qquad k,l\geq 0,\;I\cap J=\varnothing.caligraphic_H start_POSTSUPERSCRIPT italic_k , italic_I end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_l , italic_J end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_k + italic_l + 1 , italic_I βŠ” italic_J end_POSTSUPERSCRIPT , italic_k , italic_l β‰₯ 0 , italic_I ∩ italic_J = βˆ… .
Proposition 2.3.

If 𝒦𝒦\mathcal{K}caligraphic_K is an n𝑛nitalic_n-dimensional simplicial complex, then the cohom*ological product length of 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is at most n+1𝑛1n+1italic_n + 1.

Proof..

Suppose there are elements ci∈Hli⁒(𝒡𝒦)subscript𝑐𝑖superscript𝐻subscript𝑙𝑖subscript𝒡𝒦c_{i}\in H^{l_{i}}(\mathcal{Z}_{\mathcal{K}})italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_H start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ), i=1,…,r𝑖1β€¦π‘Ÿi=1,\ldots,ritalic_i = 1 , … , italic_r, such thatc1⁒⋯⁒cr=cβ‰ 0subscript𝑐1β‹―subscriptπ‘π‘Ÿπ‘0c_{1}\cdots c_{r}=c\neq 0italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹― italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_c β‰  0.This implies, by Theorem2.2, that there are elementsc^∈H~l⁒(𝒦J)^𝑐superscript~𝐻𝑙subscript𝒦𝐽\widehat{c}\in\widetilde{H}^{l}(\mathcal{K}_{J})over^ start_ARG italic_c end_ARG ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) and c^i∈H~liβˆ’|Ji|βˆ’1⁒(𝒦Ji)subscript^𝑐𝑖superscript~𝐻subscript𝑙𝑖subscript𝐽𝑖1subscript𝒦subscript𝐽𝑖\widehat{c}_{i}\in\widetilde{H}^{l_{i}-|J_{i}|-1}(\mathcal{K}_{J_{i}})over^ start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) such that c^1⁒⋯⁒c^r=c^β‰ 0subscript^𝑐1β‹―subscript^π‘π‘Ÿ^𝑐0\widehat{c}_{1}\cdots\widehat{c}_{r}=\widehat{c}\neq 0over^ start_ARG italic_c end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹― over^ start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = over^ start_ARG italic_c end_ARG β‰  0, where l=(βˆ‘i=1rliβˆ’|Ji|βˆ’1)+rβˆ’1𝑙subscriptsuperscriptπ‘Ÿπ‘–1subscript𝑙𝑖subscript𝐽𝑖1π‘Ÿ1l=(\sum^{r}_{i=1}l_{i}-|J_{i}|-1)+r-1italic_l = ( βˆ‘ start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 ) + italic_r - 1, liβˆ’|Ji|βˆ’1β‰₯0subscript𝑙𝑖subscript𝐽𝑖10l_{i}-|J_{i}|-1\geq 0italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 β‰₯ 0 and J=J1βŠ”β‹―βŠ”Jr𝐽square-unionsubscript𝐽1β‹―subscriptπ½π‘ŸJ=J_{1}\sqcup\cdots\sqcup J_{r}italic_J = italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_J start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. It follows that

n=dim𝒦β‰₯l=(βˆ‘i=1rliβˆ’|Ji|βˆ’1)+rβˆ’1β‰₯rβˆ’1,𝑛dimension𝒦𝑙subscriptsuperscriptπ‘Ÿπ‘–1subscript𝑙𝑖subscript𝐽𝑖1π‘Ÿ1π‘Ÿ1n=\dim\mathcal{K}\geq l=\Bigl{(}\sum^{r}_{i=1}l_{i}-|J_{i}|-1\Bigr{)}+r-1\geq r%-1,italic_n = roman_dim caligraphic_K β‰₯ italic_l = ( βˆ‘ start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - | italic_J start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | - 1 ) + italic_r - 1 β‰₯ italic_r - 1 ,

hence n+1β‰₯r𝑛1π‘Ÿn+1\geq ritalic_n + 1 β‰₯ italic_r, as claimed.∎

A (convex) polytope P𝑃Pitalic_P is a bounded intersection of a finite number of halfspaces in a real affine space. A facet of P𝑃Pitalic_P is its face of codimension1111.

A polytope P𝑃Pitalic_P of dimension n𝑛nitalic_n is called simple if each vertex of P𝑃Pitalic_P belongs to exactly n𝑛nitalic_n facets. So if P𝑃Pitalic_P is simple, then the dual polytope Pβˆ—superscript𝑃P^{*}italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is simplicial and its boundary βˆ‚Pβˆ—superscript𝑃\partial P^{*}βˆ‚ italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a simplicial complex, which we denote by 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. Then 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is the nerve complex of the covering of βˆ‚P𝑃\partial Pβˆ‚ italic_P by its facets. The moment-angle complex 𝒡𝒦Psubscript𝒡subscript𝒦𝑃\mathcal{Z}_{\mathcal{K}_{P}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT end_POSTSUBSCRIPT is denoted simply by𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT.

A simplicial sphere (or triangulated sphere) is a simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K whose geometric realisation is homeomorphic to a sphere. If P𝑃Pitalic_P is a simple polytope of dimensionn𝑛nitalic_n, then the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a simplicial sphere of dimensionnβˆ’1𝑛1n-1italic_n - 1.For n≀3𝑛3n\leq 3italic_n ≀ 3, any simplicial sphere of dimension nβˆ’1𝑛1n-1italic_n - 1 is combinatorially equivalent to the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT of a simple n𝑛nitalic_n-dimensional polytopeP𝑃Pitalic_P. This is not true in dimensions nβ‰₯4𝑛4n\geq 4italic_n β‰₯ 4; the Barnette sphere is a famous example of a 3333-dimensional simplicial sphere with 8888 vertices that is not combinatorially equivalent to the boundary of a convex 4444-dimensional polytope (see[BP, Β§2.5]).

Theorem 2.4 ([BP, Theorem 4.1.4, Corollary 6.2.5]).

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension (nβˆ’1)𝑛1(n-1)( italic_n - 1 ) with mπ‘šmitalic_m vertices. Then 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is a closed topological manifold of dimension m+nπ‘šπ‘›m+nitalic_m + italic_n. If P𝑃Pitalic_P be a simple n𝑛nitalic_n-dimensional polytope with mπ‘šmitalic_m facets, then 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a smooth manifold of dimension m+nπ‘šπ‘›m+nitalic_m + italic_n.

A simple polytope Q𝑄Qitalic_Q is called stacked if it can be obtained from a simplex by a sequence of stellar subdivisions of facets. Equivalently, the dual simple polytope P=Qβˆ—π‘ƒsuperscript𝑄P=Q^{*}italic_P = italic_Q start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is obtained from a simplex by iterating the vertex cut operation.

A connected sum of products of spheres is a closed n𝑛nitalic_n-dimensional manifold M𝑀Mitalic_M homeomorphic to a connected sum M1⁒#⁒⋯⁒#⁒Mksubscript𝑀1#β‹―#subscriptπ‘€π‘˜M_{1}\#\cdots\#M_{k}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT where each Mksubscriptπ‘€π‘˜M_{k}italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is a product spheres Snk⁒1Γ—β‹―Γ—Snk⁒lsuperscript𝑆subscriptπ‘›π‘˜1β‹―superscript𝑆subscriptπ‘›π‘˜π‘™S^{n_{k1}}\times\cdots\times S^{n_{kl}}italic_S start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_k 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT Γ— β‹― Γ— italic_S start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_k italic_l end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, where nk⁒1+β‹―+nk⁒l=nsubscriptπ‘›π‘˜1β‹―subscriptπ‘›π‘˜π‘™π‘›n_{k1}+\cdots+n_{kl}=nitalic_n start_POSTSUBSCRIPT italic_k 1 end_POSTSUBSCRIPT + β‹― + italic_n start_POSTSUBSCRIPT italic_k italic_l end_POSTSUBSCRIPT = italic_n.

The next theorem follows from the results of McGavran[M], see[BM, Theorem6.3]. See also[GL, Β§2.2] for a different approach.

Theorem 2.5 (see [BP, Theorem4.6.12]).

Let P𝑃Pitalic_P be a dual stacked n𝑛nitalic_n-polytope with m>n+1π‘šπ‘›1m>n+1italic_m > italic_n + 1 facets. Then the corresponding moment-angle manifold is homeomorphic to a connected sum of products of spheres with two spheres in each product, namely,

𝒡Pβ‰…#k=3mβˆ’n+1⁒(SkΓ—Sm+nβˆ’k)#⁒(kβˆ’2)⁒(mβˆ’nkβˆ’1)subscriptπ’΅π‘ƒπ‘˜3π‘šπ‘›1#superscriptsuperscriptπ‘†π‘˜superscriptπ‘†π‘šπ‘›π‘˜#π‘˜2binomialπ‘šπ‘›π‘˜1\mathcal{Z}_{P}\cong\underset{k=3}{\overset{m-n+1}{\#}}(S^{k}\times S^{m+n-k})%^{\#(k-2)\binom{m-n}{k-1}}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT β‰… start_UNDERACCENT italic_k = 3 end_UNDERACCENT start_ARG start_OVERACCENT italic_m - italic_n + 1 end_OVERACCENT start_ARG # end_ARG end_ARG ( italic_S start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT italic_m + italic_n - italic_k end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT # ( italic_k - 2 ) ( FRACOP start_ARG italic_m - italic_n end_ARG start_ARG italic_k - 1 end_ARG ) end_POSTSUPERSCRIPT

In particular, the moment-angle complex corresponding to a polygon (a two-dimensional polytope) is a connected sum of products of spheres.

A graph ΓΓ\Gammaroman_Ξ“ is a one-dimensional simplicial complex.A graph ΓΓ\Gammaroman_Ξ“ is called chordal if every cycle of ΓΓ\Gammaroman_Ξ“ with more than 3333 vertices has a chord, where a chord is an edge connecting two vertices that are not adjacent in the cycle.The vertices of a graph are in perfect elimination order if for any vertex {i}𝑖\{i\}{ italic_i } all its neighbours with indices less than i𝑖iitalic_i are pairwise adjacent.

Theorem 2.6 ([FG]).

A graph is chordal if and only if its vertices can be arranged in a perfect elimination order.

The following property of chordal graphs is immediate from Theorem2.6.

Proposition 2.7.

Let ΓΓ\Gammaroman_Ξ“ be a chordal graph on mπ‘šmitalic_m vertices, and suppose that the vertices of ΓΓ\Gammaroman_Ξ“ are arranged in a perfect elimination order. Then Ξ“βˆ–{m}Ξ“π‘š\Gamma\setminus\{m\}roman_Ξ“ βˆ– { italic_m } is also a chordal graph, and the vertices of Ξ“βˆ–{m}Ξ“π‘š\Gamma\setminus\{m\}roman_Ξ“ βˆ– { italic_m } are automatically arranged in the perfect elimination order.

Lemma 2.8.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension greater than 1111 such that Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of two spheres. Then the one-skeleton 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph.

Proof..

Let dim𝒦=nβˆ’1dimension𝒦𝑛1\dim\mathcal{K}=n-1roman_dim caligraphic_K = italic_n - 1 and Mi=SliΓ—Sm+nβˆ’lisubscript𝑀𝑖superscript𝑆subscript𝑙𝑖superscriptπ‘†π‘šπ‘›subscript𝑙𝑖M_{i}=S^{l_{i}}\times S^{m+n-l_{i}}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_S start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT italic_m + italic_n - italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, i=1,…,k𝑖1β€¦π‘˜i=1,\ldots,kitalic_i = 1 , … , italic_k. We denote the corresponding generators of Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) by aisubscriptπ‘Žπ‘–a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, bisubscript𝑏𝑖b_{i}italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, where deg⁑ai=lidegreesubscriptπ‘Žπ‘–subscript𝑙𝑖\deg a_{i}=l_{i}roman_deg italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, deg⁑bi=m+nβˆ’lidegreesubscriptπ‘π‘–π‘šπ‘›subscript𝑙𝑖\deg b_{i}=m+n-l_{i}roman_deg italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_m + italic_n - italic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, i=1,…,k𝑖1β€¦π‘˜i=1,\ldots,kitalic_i = 1 , … , italic_k, and c𝑐citalic_c, deg⁑c=m+ndegreeπ‘π‘šπ‘›\deg c=m+nroman_deg italic_c = italic_m + italic_n (the fundamental class). We have relations aiβ‹…bi=cβ‹…subscriptπ‘Žπ‘–subscript𝑏𝑖𝑐a_{i}\cdot b_{i}=citalic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_c for i=1,…,k𝑖1β€¦π‘˜i=1,\ldots,kitalic_i = 1 , … , italic_k, and all other products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) are trivial.

Suppose that there is a chordless cycle C𝐢Citalic_C in 𝒦𝒦\mathcal{K}caligraphic_K with p>3𝑝3p>3italic_p > 3 vertices. Then C𝐢Citalic_C is a full subcomplex in 𝒦𝒦\mathcal{K}caligraphic_K, therefore Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) is a subring of Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) by Lemma2.1. By Theorem2.5 𝒡Csubscript𝒡𝐢\mathcal{Z}_{C}caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT is also a connected sum of products of spheres, so there are nontrivial products ajβ€²β‹…bjβ€²=cβ€²β‹…subscriptsuperscriptπ‘Žβ€²π‘—subscriptsuperscript𝑏′𝑗superscript𝑐′a^{\prime}_{j}\cdot b^{\prime}_{j}=c^{\prime}italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‹… italic_b start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT in the ring Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ), where cβ€²superscript𝑐′c^{\prime}italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is the fundamental class of 𝒡Csubscript𝒡𝐢\mathcal{Z}_{C}caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT and deg⁑cβ€²=|C|+2≀m+2<m+n=deg⁑cdegreesuperscript𝑐′𝐢2π‘š2π‘šπ‘›degree𝑐\deg c^{\prime}=|C|+2\leq m+2<m+n=\deg croman_deg italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = | italic_C | + 2 ≀ italic_m + 2 < italic_m + italic_n = roman_deg italic_c, which is impossible in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ).Thus, there are no chordless cycles in 𝒦𝒦\mathcal{K}caligraphic_K with more than three vertices, so 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph.∎

The converse of Lemma2.8 holds for two- and three-dimensional spheres, as shown in the next two sections, but fails in higher dimensions, as shown by the example below. A missing edge of 𝒦𝒦\mathcal{K}caligraphic_K is a pair of vertices that do not form a 1111-simplex.

Example 2.9.

Let P𝑃Pitalic_P be the three-dimensional polytope obtained by cutting two vertices of the tetrahedronΞ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.By Theorem2.5,

𝒡Pβ‰…(S3Γ—S6)#⁒3⁒#⁒(S4Γ—S5)#⁒2.subscript𝒡𝑃superscriptsuperscript𝑆3superscript𝑆6#3#superscriptsuperscript𝑆4superscript𝑆5#2\mathcal{Z}_{P}\cong(S^{3}\times S^{6})^{\#3}\#(S^{4}\times S^{5})^{\#2}\,.caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT β‰… ( italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT # 3 end_POSTSUPERSCRIPT # ( italic_S start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT # 2 end_POSTSUPERSCRIPT .

Now let Pβ€²=PΓ—Ξ”dsuperscript𝑃′𝑃superscriptΔ𝑑P^{\prime}=P\times\Delta^{d}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_P Γ— roman_Ξ” start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT, where d>1𝑑1d>1italic_d > 1, so that 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is a simplicial sphere of dimension d+2>3𝑑23d+2>3italic_d + 2 > 3.We have 𝒡Pβ€²=𝒡P×𝒡Δd≅𝒡PΓ—S2⁒dβˆ’1subscript𝒡superscript𝑃′subscript𝒡𝑃subscript𝒡superscriptΔ𝑑subscript𝒡𝑃superscript𝑆2𝑑1\mathcal{Z}_{P^{\prime}}=\mathcal{Z}_{P}\times\mathcal{Z}_{\Delta^{d}}\cong%\mathcal{Z}_{P}\times S^{2d-1}caligraphic_Z start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT Γ— caligraphic_Z start_POSTSUBSCRIPT roman_Ξ” start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT end_POSTSUBSCRIPT β‰… caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 2 italic_d - 1 end_POSTSUPERSCRIPT, which is not a connected sum of products of spheres. However, 𝒦Pβ€²1superscriptsubscript𝒦superscript𝑃′1\mathcal{K}_{P^{\prime}}^{1}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph. Indeed, 𝒦Pβ€²=𝒦Pβˆ—βˆ‚Ξ”dsubscript𝒦superscript𝑃′subscript𝒦𝑃superscriptΔ𝑑\mathcal{K}_{P^{\prime}}=\mathcal{K}_{P}*\partial\Delta^{d}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ— βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. Hence, each missing edge of 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is a missing edge of𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. There are only three missing edges in 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, and no two of them form a chordless 4444-cycle. Also, there can be no chordless cycles with more than 4444 vertices, as any such chordless cycle has at least 5555 missing edges.

The next lemma builds upon the results of[FCMW, Β§4].

Lemma 2.10.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension >1absent1>1> 1 such thatHβˆ—β’(𝒡K)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝐾superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{K})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres. Suppose that𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is not a chordal graph. Then all missing edges I1,…,Irsubscript𝐼1…subscriptπΌπ‘ŸI_{1},\ldots,I_{r}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT of 𝒦𝒦\mathcal{K}caligraphic_K are pairwise disjoint and

𝒦I1βŠ”I2βŠ”β‹―βŠ”Ir=𝒦I1βˆ—π’¦I2βˆ—β‹―βˆ—π’¦Ir.subscript𝒦square-unionsubscript𝐼1subscript𝐼2β‹―subscriptπΌπ‘Ÿsubscript𝒦subscript𝐼1subscript𝒦subscript𝐼2β‹―subscript𝒦subscriptπΌπ‘Ÿ\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup\cdots\sqcup I_{r}}=\mathcal{K}_{I_{1}}*%\mathcal{K}_{I_{2}}*\cdots*\mathcal{K}_{I_{r}}.caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT .
Proof..

By [FCMW, Lemma4.5] any chordless cycle in 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has three or four vertices. Since 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is not chordal, it contains a chordless 4444-cycle. Then by[FCMW, Lemma4.6] missing edges of 𝒦𝒦\mathcal{K}caligraphic_K are pairwise disjoint, i. e. each pair of missing edges forms a chordless 4444-cycle.

We have H3⁒(𝒡𝒦)≅⨁|J|=2H~0⁒(𝒦J)=⨁j=1rH~0⁒(𝒦Ij)superscript𝐻3subscript𝒡𝒦subscriptdirect-sum𝐽2superscript~𝐻0subscript𝒦𝐽superscriptsubscriptdirect-sum𝑗1π‘Ÿsuperscript~𝐻0subscript𝒦subscript𝐼𝑗H^{3}(\mathcal{Z}_{\mathcal{K}})\cong\bigoplus_{|J|=2}\widetilde{H}^{0}(%\mathcal{K}_{J})=\bigoplus_{j=1}^{r}\widetilde{H}^{0}(\mathcal{K}_{I_{j}})italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… ⨁ start_POSTSUBSCRIPT | italic_J | = 2 end_POSTSUBSCRIPT over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) = ⨁ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) by Theorem2.2. Choose a basis a1,…,arsubscriptπ‘Ž1…subscriptπ‘Žπ‘Ÿa_{1},\ldots,a_{r}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT of H3⁒(𝒡𝒦)superscript𝐻3subscript𝒡𝒦H^{3}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) according to this decomposition, so that ajsubscriptπ‘Žπ‘—a_{j}italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT corresponds to a generator of H~0⁒(𝒦Ij)=H~0⁒(S0)β‰…β„€superscript~𝐻0subscript𝒦subscript𝐼𝑗superscript~𝐻0superscript𝑆0β„€\widetilde{H}^{0}(\mathcal{K}_{I_{j}})=\widetilde{H}^{0}(S^{0})\cong\mathbb{Z}over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ) β‰… blackboard_Z for j=1,…,r𝑗1β€¦π‘Ÿj=1,\ldots,ritalic_j = 1 , … , italic_r. Each product ajβ‹…akβ‹…subscriptπ‘Žπ‘—subscriptπ‘Žπ‘˜a_{j}\cdot a_{k}italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is nonzero by Theorem2.2, because 𝒦IjβŠ”Iksubscript𝒦square-unionsubscript𝐼𝑗subscriptπΌπ‘˜\mathcal{K}_{I_{j}\sqcup I_{k}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a 4444-cycle.

Through the ring isomorphism Hβˆ—β’(𝒡K)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝐾superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{K})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), three-dimensional sphere factors Sj⁒i3subscriptsuperscript𝑆3𝑗𝑖S^{3}_{ji}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT in the connected summands Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT correspond to cohom*ology classes in H3⁒(𝒡K)superscript𝐻3subscript𝒡𝐾H^{3}(\mathcal{Z}_{K})italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ), which we denote by s1,…,srsubscript𝑠1…subscriptπ‘ π‘Ÿs_{1},\ldots,s_{r}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. We have H3⁒(𝒡K)β‰…β„€β’βŸ¨a1,…,arβŸ©β‰…β„€β’βŸ¨s1,…,sr⟩superscript𝐻3subscript𝒡𝐾℀subscriptπ‘Ž1…subscriptπ‘Žπ‘Ÿβ„€subscript𝑠1…subscriptπ‘ π‘ŸH^{3}(\mathcal{Z}_{K})\cong\mathbb{Z}\langle a_{1},\ldots,a_{r}\rangle\cong%\mathbb{Z}\langle s_{1},\ldots,s_{r}\rangleitalic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) β‰… blackboard_Z ⟨ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ⟩ β‰… blackboard_Z ⟨ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ⟩. Furthermore, if we denote the subring of Hβˆ—β’(𝒡K)superscript𝐻subscript𝒡𝐾H^{*}(\mathcal{Z}_{K})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) generated by a1,…,arsubscriptπ‘Ž1…subscriptπ‘Žπ‘Ÿa_{1},\ldots,a_{r}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT by A𝐴Aitalic_A and denote the subring generated by s1,…,srsubscript𝑠1…subscriptπ‘ π‘Ÿs_{1},\ldots,s_{r}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT by R𝑅Ritalic_R, then we have a ring isomorphism Aβ‰…R𝐴𝑅A\cong Ritalic_A β‰… italic_R. Since aiβ‹…ajβ‰ 0β‹…subscriptπ‘Žπ‘–subscriptπ‘Žπ‘—0a_{i}\cdot a_{j}\neq 0italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‰  0 for any iβ‰ j𝑖𝑗i\neq jitalic_i β‰  italic_j, we have missingr⁒a⁒n⁒k⁒A6=missingr⁒a⁒n⁒k⁒R6=r⁒(rβˆ’1)2missingπ‘Ÿπ‘Žπ‘›π‘˜superscript𝐴6missingπ‘Ÿπ‘Žπ‘›π‘˜superscript𝑅6π‘Ÿπ‘Ÿ12\mathop{\mathrm{missing}}{rank}A^{6}=\mathop{\mathrm{missing}}{rank}R^{6}=%\frac{r(r-1)}{2}roman_missing italic_r italic_a italic_n italic_k italic_A start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = roman_missing italic_r italic_a italic_n italic_k italic_R start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = divide start_ARG italic_r ( italic_r - 1 ) end_ARG start_ARG 2 end_ARG. This implies that siβ‹…sjβ‰ 0β‹…subscript𝑠𝑖subscript𝑠𝑗0s_{i}\cdot s_{j}\neq 0italic_s start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_s start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β‰  0 for iβ‰ j𝑖𝑗i\neq jitalic_i β‰  italic_j. It follows that all spheres Sj⁒i3subscriptsuperscript𝑆3𝑗𝑖S^{3}_{ji}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_i end_POSTSUBSCRIPT, j=1,…,r𝑗1β€¦π‘Ÿj=1,\ldots,ritalic_j = 1 , … , italic_r, belong to the same connected summandMisubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, because the product of the cohom*ology classes corresponding to sphere factors in different summands of the connected sum M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mksubscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜M_{1}\#M_{2}\#\cdots\#M_{k}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is zero. Therefore, s1β‹…s2⁒⋯⁒srβ‰ 0β‹…subscript𝑠1subscript𝑠2β‹―subscriptπ‘ π‘Ÿ0s_{1}\cdot s_{2}\cdots s_{r}\neq 0italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT β‰  0 inR𝑅Ritalic_R. This implies, by the ring isomorphism Aβ‰…R𝐴𝑅A\cong Ritalic_A β‰… italic_R, that a1β‹…a2⁒⋯⁒arβ‹…subscriptπ‘Ž1subscriptπ‘Ž2β‹―subscriptπ‘Žπ‘Ÿa_{1}\cdot a_{2}\cdots a_{r}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_a start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is nonzero in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ). Now it follows from the product description in Theorem2.2 that 𝒦I1βŠ”I2βŠ”β‹―βŠ”Ir=𝒦I1βˆ—π’¦I2βˆ—β‹―βˆ—π’¦Irsubscript𝒦square-unionsubscript𝐼1subscript𝐼2β‹―subscriptπΌπ‘Ÿsubscript𝒦subscript𝐼1subscript𝒦subscript𝐼2β‹―subscript𝒦subscriptπΌπ‘Ÿ\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup\cdots\sqcup I_{r}}=\mathcal{K}_{I_{1}}*%\mathcal{K}_{I_{2}}*\cdots*\mathcal{K}_{I_{r}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT.∎

3. Two-dimensional spheres

Here we consider moment-angle manifolds corresponding to two-dimensional simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K or, equivalently, to three-dimensional simple polytopes P𝑃Pitalic_P.

The case P=I3𝑃superscript𝐼3P=I^{3}italic_P = italic_I start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT (a three-dimensional cube) is special. In this case the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is S0βˆ—S0βˆ—S0superscript𝑆0superscript𝑆0superscript𝑆0S^{0}*S^{0}*S^{0}italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (the join of three 00-dimensional spheres, or the boundary of a three-dimensional cross-polytope) and 𝒡Pβ‰…S3Γ—S3Γ—S3subscript𝒡𝑃superscript𝑆3superscript𝑆3superscript𝑆3\mathcal{Z}_{P}\cong S^{3}\times S^{3}\times S^{3}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT β‰… italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

A simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K is called Golod if the multiplication and all higher Massey products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) are trivial. (Equivalently, the Stanley–Reisner ring 𝐀⁒[𝒦]𝐀delimited-[]𝒦\mathbf{k}[\mathcal{K}]bold_k [ caligraphic_K ] is a Golod ring over any field 𝐀𝐀\mathbf{k}bold_k, see[BP, Β§4.9].) A simplicial complex 𝒦𝒦\mathcal{K}caligraphic_K on [m]delimited-[]π‘š[m][ italic_m ] is called minimally non-Golod if 𝒦𝒦\mathcal{K}caligraphic_K is not Golod, but for any vertex i∈[m]𝑖delimited-[]π‘ši\in[m]italic_i ∈ [ italic_m ] the complex 𝒦[m]βˆ–{i}subscript𝒦delimited-[]π‘šπ‘–\mathcal{K}_{[m]\setminus\{i\}}caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– { italic_i } end_POSTSUBSCRIPT is Golod.

The following result extends[BM, Proposition11.6], where the equvalence of conditions (a), (b) and (c) was proved:

Proposition 3.1.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a two-dimensional simplicial sphere and let P𝑃Pitalic_P be the a three-dimensional simple polytope such that 𝒦=𝒦P𝒦subscript𝒦𝑃\mathcal{K}=\mathcal{K}_{P}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. Suppose that P𝑃Pitalic_P is not a cube. The following conditions are equivalent:

  • (a)

    P𝑃Pitalic_P is obtained from a simplex Ξ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT by iterating the vertex cut operation, i. e. Pβˆ—superscript𝑃P^{*}italic_P start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT is a stacked polytope;

  • (b)

    𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is diffeomorphic to a connected sum of products of spheres;

  • (c)

    Hβˆ—β’(𝒡P)superscript𝐻subscript𝒡𝑃H^{*}(\mathcal{Z}_{P})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres;

  • (d)

    the one-dimensional skeleton of the nerve complex 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a chordal graph;

  • (e)

    𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is minimally non-Golod, unless P=Ξ”3𝑃superscriptΞ”3P=\Delta^{3}italic_P = roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

Proof..

We prove the implications (a)⇒⇒\Rightarrow⇒(b)⇒⇒\Rightarrow⇒(c)⇒⇒\Rightarrow⇒(d)⇒⇒\Rightarrow⇒(a), (e)⇒⇒\Rightarrow⇒(d) and (a)⇒⇒\Rightarrow⇒(e).

(a)⇒⇒\Rightarrow⇒(b) This is Theorem2.5.

(b)⇒⇒\Rightarrow⇒(c) is clear.

(c)β‡’β‡’\Rightarrowβ‡’(d) Let Hβˆ—β’(𝒡P)β‰…Hβˆ—β’(M1⁒#⁒M2⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝑃superscript𝐻subscript𝑀1#subscript𝑀2#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{P})\cong H^{*}(M_{1}\#M_{2}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ), where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres.Since the cohom*ological product length of 𝒡Psubscript𝒡𝑃\mathcal{Z}_{P}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is at most 3333(Corollary2.3), there is at most 3333 sphere factors in eachMisubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. If some Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT has exactly 3333 factors, then 𝒡P=S3Γ—S3Γ—S3subscript𝒡𝑃superscript𝑆3superscript𝑆3superscript𝑆3\mathcal{Z}_{P}=S^{3}\times S^{3}\times S^{3}caligraphic_Z start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT = italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Γ— italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and P𝑃Pitalic_P is a cube by[FCMW, Theorem4.3(a)]. This contradicts the assumption.Now, 𝒦P1subscriptsuperscript𝒦1𝑃\mathcal{K}^{1}_{P}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is a chordal graph by Lemma2.8.

(d)β‡’β‡’\Rightarrowβ‡’(a) We use induction on the number mπ‘šmitalic_m of facets of P𝑃Pitalic_P. The base m=4π‘š4m=4italic_m = 4 is clear, as P𝑃Pitalic_P is a simplex Ξ”3superscriptΞ”3\Delta^{3}roman_Ξ” start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT in this case.

For the induction step, assume that the vertices of 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT are arranged in a perfect elimination order. Let j1,…,jssubscript𝑗1…subscript𝑗𝑠j_{1},\ldots,j_{s}italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT be the vertices adjacent to the last vertexmπ‘šmitalic_m. First we prove that s=3𝑠3s=3italic_s = 3.

Let Fisubscript𝐹𝑖F_{i}italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT denote the i𝑖iitalic_ith facet ofP𝑃Pitalic_P. Since {j1,…,js}subscript𝑗1…subscript𝑗𝑠\{j_{1},\ldots,j_{s}\}{ italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_j start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT } is a clique of 𝒦P1subscriptsuperscript𝒦1𝑃\mathcal{K}^{1}_{P}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT, the facets Fj1,…,Fjssubscript𝐹subscript𝑗1…subscript𝐹subscript𝑗𝑠F_{j_{1}},\ldots,F_{j_{s}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , … , italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_POSTSUBSCRIPT are pairwise adjacent.Suppose that sβ‰₯4𝑠4s\geq 4italic_s β‰₯ 4. Renumbering the facets if necessary, we may assume that Fj1subscript𝐹subscript𝑗1F_{j_{1}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, Fj2subscript𝐹subscript𝑗2F_{j_{2}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, Fj3subscript𝐹subscript𝑗3F_{j_{3}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, Fj4subscript𝐹subscript𝑗4F_{j_{4}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are consecutive facets in a cyclic order aroundFmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, so that Fm∩Fj1∩Fj3=βˆ…subscriptπΉπ‘šsubscript𝐹subscript𝑗1subscript𝐹subscript𝑗3F_{m}\cap F_{j_{1}}\cap F_{j_{3}}=\varnothingitalic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = βˆ… and Fm∩Fj2∩Fj4=βˆ…subscriptπΉπ‘šsubscript𝐹subscript𝑗2subscript𝐹subscript𝑗4F_{m}\cap F_{j_{2}}\cap F_{j_{4}}=\varnothingitalic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = βˆ….Since Fj1subscript𝐹subscript𝑗1F_{j_{1}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Fj3subscript𝐹subscript𝑗3F_{j_{3}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are adjacent, the facets FmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, Fj1subscript𝐹subscript𝑗1F_{j_{1}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Fj3subscript𝐹subscript𝑗3F_{j_{3}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT form a 3333-belt (a prismatic 3333-circuit). This 3333-belt splits βˆ‚P𝑃\partial Pβˆ‚ italic_P into two connected components[BE, Lemma2.7.2]. The facets Fj2subscript𝐹subscript𝑗2F_{j_{2}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and Fj4subscript𝐹subscript𝑗4F_{j_{4}}italic_F start_POSTSUBSCRIPT italic_j start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT lie in different components, so they cannot be adjacent. A contradiction. Hence, s=3𝑠3s=3italic_s = 3.

Since FmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT has 3333 adjacent facets, it is a triangle. If FmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is adjacent to a triangular facet, then P𝑃Pitalic_P is a simplex. Otherwise, there exist a polytope Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT such that P𝑃Pitalic_P is obtained from Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT by cutting a vertex with formation of a new facetFmsubscriptπΉπ‘šF_{m}italic_F start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT.Then 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is obtained from 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT by removing the vertex {m}π‘š\{m\}{ italic_m } and adding simplex {j1,j2,j3}subscript𝑗1subscript𝑗2subscript𝑗3\{j_{1},j_{2},j_{3}\}{ italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_j start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT }. Hence, the 1111-skeleton of 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is also a chordal graph by Proposition2.7. Now Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has mβˆ’1π‘š1m-1italic_m - 1 facets, so we complete the induction step.

(e)β‡’β‡’\Rightarrowβ‡’(d) Let 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT be minimally non-Golod, and suppose there is a chordless cycle C𝐢Citalic_C in 𝒦P1superscriptsubscript𝒦𝑃1\mathcal{K}_{P}^{1}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT with p>3𝑝3p>3italic_p > 3 vertices. Then C𝐢Citalic_C is a full subcomplex of 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT and p<mπ‘π‘šp<mitalic_p < italic_m (otherwise 𝒦P=Csubscript𝒦𝑃𝐢\mathcal{K}_{P}=Ccaligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT = italic_C, which is impossible for a 3333-dimensional polytope). For any vertex v∈[m]βˆ–C𝑣delimited-[]π‘šπΆv\in[m]\setminus Citalic_v ∈ [ italic_m ] βˆ– italic_C, note that C𝐢Citalic_C is also a full subcomplex also in 𝒦Pβˆ–{v}subscript𝒦𝑃𝑣\mathcal{K}_{P}\setminus\{v\}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v }. Therefore, Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) is a subring of Hβˆ—β’(𝒡𝒦Pβˆ–{v})superscript𝐻subscript𝒡subscript𝒦𝑃𝑣H^{*}(\mathcal{Z}_{\mathcal{K}_{P}\setminus\{v\}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v } end_POSTSUBSCRIPT ) by Lemma2.1. On the other hand, there are nontrivial products is Hβˆ—β’(𝒡C)superscript𝐻subscript𝒡𝐢H^{*}(\mathcal{Z}_{C})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ) by Theorem2.5, whereas all products in Hβˆ—β’(𝒡𝒦Pβˆ–{v})superscript𝐻subscript𝒡subscript𝒦𝑃𝑣H^{*}(\mathcal{Z}_{\mathcal{K}_{P}\setminus\{v\}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v } end_POSTSUBSCRIPT ) must be trivial, since 𝒦Pβˆ–{v}subscript𝒦𝑃𝑣\mathcal{K}_{P}\setminus\{v\}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT βˆ– { italic_v } is Golod. A contradiction. Hence, there are no chordless cycles in𝒦P1superscriptsubscript𝒦𝑃1\mathcal{K}_{P}^{1}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT.

(a)β‡’β‡’\Rightarrowβ‡’(e) This follows from[L, Theorem3.9]: if an n𝑛nitalic_n-dimensional simple polytope P𝑃Pitalic_P is obtained from Pβ€²superscript𝑃′P^{\prime}italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT by a vertex cut, and 𝒦Pβ€²subscript𝒦superscript𝑃′\mathcal{K}_{P^{\prime}}caligraphic_K start_POSTSUBSCRIPT italic_P start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is minimally non-Golod, then 𝒦Psubscript𝒦𝑃\mathcal{K}_{P}caligraphic_K start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT is also minimally non-Golod.∎

4. Three-dimensional spheres

Recall that the product in Hβˆ—β’(𝒡𝒦)=β„‹βˆ—,βˆ—β’(𝒦)superscript𝐻subscript𝒡𝒦superscriptℋ𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})=\mathcal{H}^{*,*}(\mathcal{K})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) = caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is given by(2.1).A nonzero element cβˆˆβ„‹l,J=H~l⁒(𝒦J)𝑐superscriptℋ𝑙𝐽superscript~𝐻𝑙subscript𝒦𝐽c\in\mathcal{H}^{l,J}=\widetilde{H}^{l}(\mathcal{K}_{J})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_l , italic_J end_POSTSUPERSCRIPT = over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) is decomposable if c=βˆ‘i=1paiβ‹…bi𝑐superscriptsubscript𝑖1𝑝⋅subscriptπ‘Žπ‘–subscript𝑏𝑖c=\sum_{i=1}^{p}a_{i}\cdot b_{i}italic_c = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for some nonzero ai∈H~ri⁒(𝒦Ii)subscriptπ‘Žπ‘–superscript~𝐻subscriptπ‘Ÿπ‘–subscript𝒦subscript𝐼𝑖a_{i}\in\widetilde{H}^{r_{i}}(\mathcal{K}_{I_{i}})italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ), bi∈H~lβˆ’1βˆ’ri⁒(𝒦Jβˆ–Ii)subscript𝑏𝑖superscript~𝐻𝑙1subscriptπ‘Ÿπ‘–subscript𝒦𝐽subscript𝐼𝑖b_{i}\in\widetilde{H}^{l-1-r_{i}}(\mathcal{K}_{J\setminus I_{i}})italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_l - 1 - italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J βˆ– italic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT ), where 0≀ri≀lβˆ’10subscriptπ‘Ÿπ‘–π‘™10\leq r_{i}\leq l-10 ≀ italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≀ italic_l - 1 and IiβŠ‚Jsubscript𝐼𝑖𝐽I_{i}\subset Jitalic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT βŠ‚ italic_J are proper subsets for i=1,…,p𝑖1…𝑝i=1,\ldots,pitalic_i = 1 , … , italic_p.

A missing face (or a minimal non-face) of 𝒦𝒦\mathcal{K}caligraphic_K is a subset IβŠ‚[m]𝐼delimited-[]π‘šI\subset[m]italic_I βŠ‚ [ italic_m ] such that I𝐼Iitalic_I is not a simplex of𝒦𝒦\mathcal{K}caligraphic_K, but every proper subset of I𝐼Iitalic_I is a simplex of𝒦𝒦\mathcal{K}caligraphic_K. Each missing face corresponds to a full subcomplex βˆ‚Ξ”IβŠ‚π’¦subscriptΔ𝐼𝒦\partial\Delta_{I}\subset\mathcal{K}βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT βŠ‚ caligraphic_K, where βˆ‚Ξ”IsubscriptΔ𝐼\partial\Delta_{I}βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT denotes the boundary of simplex Ξ”IsubscriptΔ𝐼\Delta_{I}roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT on the vertex setI𝐼Iitalic_I. A missing face I𝐼Iitalic_I defines a simplicial hom*ology class in H~|I|βˆ’2⁒(𝒦)subscript~𝐻𝐼2𝒦\widetilde{H}_{|I|-2}(\mathcal{K})over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT | italic_I | - 2 end_POSTSUBSCRIPT ( caligraphic_K ), which we continue to denote byβˆ‚Ξ”IsubscriptΔ𝐼\partial\Delta_{I}βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT.We denote by missingM⁒Fn⁒(𝒦)missing𝑀subscript𝐹𝑛𝒦\mathop{\mathrm{missing}}{MF}_{n}(\mathcal{K})roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( caligraphic_K ) the set of missing faces I𝐼Iitalic_I of dimension n𝑛nitalic_n, that is, with |I|=n+1𝐼𝑛1|I|=n+1| italic_I | = italic_n + 1.

Lemma 4.1.

Let I∈missingM⁒Fl⁒(𝒦)𝐼missing𝑀subscript𝐹𝑙𝒦I\in\mathop{\mathrm{missing}}{MF}_{l}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( caligraphic_K ) be a missing face of 𝒦𝒦\mathcal{K}caligraphic_K. Then any cohom*ology class cβˆˆβ„‹lβˆ’1,βˆ—β’(𝒦)𝑐superscriptℋ𝑙1𝒦c\in\mathcal{H}^{l-1,*}(\mathcal{K})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_l - 1 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) such that ⟨c,βˆ‚Ξ”IβŸ©β‰ 0𝑐subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle\neq 0⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ β‰  0 is indecomposable.

Proof..

Let 𝒦′superscript𝒦′\mathcal{K}^{\prime}caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be the simplicial complex obtained from 𝒦𝒦\mathcal{K}caligraphic_K by filling in all missing faces of dimensionl𝑙litalic_l with simplices, so that missingM⁒Fl⁒(𝒦′)=βˆ…missing𝑀subscript𝐹𝑙superscript𝒦′\mathop{\mathrm{missing}}{MF}_{l}(\mathcal{K}^{\prime})=\varnothingroman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = βˆ… and 𝒦lβˆ’1=(𝒦′)lβˆ’1superscript𝒦𝑙1superscriptsuperscript𝒦′𝑙1\mathcal{K}^{l-1}=(\mathcal{K}^{\prime})^{l-1}caligraphic_K start_POSTSUPERSCRIPT italic_l - 1 end_POSTSUPERSCRIPT = ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_l - 1 end_POSTSUPERSCRIPT. Then the inclusion i:𝒦β†ͺ𝒦′:𝑖β†ͺ𝒦superscript𝒦′i:\mathcal{K}\hookrightarrow\mathcal{K}^{\prime}italic_i : caligraphic_K β†ͺ caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT induces a ring hom*omorphism iβˆ—:β„‹βˆ—,βˆ—β’(𝒦′)β†’β„‹βˆ—,βˆ—β’(𝒦):superscript𝑖→superscriptβ„‹superscript𝒦′superscriptℋ𝒦i^{*}:\mathcal{H}^{*,*}(\mathcal{K}^{\prime})\rightarrow\mathcal{H}^{*,*}(%\mathcal{K})italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT : caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) β†’ caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) and β„‹r,βˆ—β’(𝒦′)β‰…β„‹r,βˆ—β’(𝒦)superscriptβ„‹π‘Ÿsuperscript𝒦′superscriptβ„‹π‘Ÿπ’¦\mathcal{H}^{r,*}(\mathcal{K}^{\prime})\cong\mathcal{H}^{r,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT italic_r , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) β‰… caligraphic_H start_POSTSUPERSCRIPT italic_r , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) for r≀lβˆ’2π‘Ÿπ‘™2r\leq l-2italic_r ≀ italic_l - 2. Also, iβˆ—β’(βˆ‚Ξ”I)=0subscript𝑖subscriptΔ𝐼0i_{*}(\partial\Delta_{I})=0italic_i start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT ( βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) = 0 for I∈missingM⁒Fl⁒(𝒦)𝐼missing𝑀subscript𝐹𝑙𝒦I\in\mathop{\mathrm{missing}}{MF}_{l}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( caligraphic_K ).

Suppose c𝑐citalic_c is decomposable, that is, c=βˆ‘i=1paiβ‹…bi𝑐superscriptsubscript𝑖1𝑝⋅subscriptπ‘Žπ‘–subscript𝑏𝑖c=\sum_{i=1}^{p}a_{i}\cdot b_{i}italic_c = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Choose aiβ€²,biβ€²superscriptsubscriptπ‘Žπ‘–β€²superscriptsubscript𝑏𝑖′a_{i}^{\prime},b_{i}^{\prime}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT such that iβˆ—β’(aiβ€²)=aisuperscript𝑖superscriptsubscriptπ‘Žπ‘–β€²subscriptπ‘Žπ‘–i^{*}(a_{i}^{\prime})=a_{i}italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and iβˆ—β’(biβ€²)=bisuperscript𝑖superscriptsubscript𝑏𝑖′subscript𝑏𝑖i^{*}(b_{i}^{\prime})=b_{i}italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and define cβ€²:=βˆ‘i=1paiβ€²β‹…biβ€²assignsuperscript𝑐′superscriptsubscript𝑖1𝑝⋅superscriptsubscriptπ‘Žπ‘–β€²superscriptsubscript𝑏𝑖′c^{\prime}:=\sum_{i=1}^{p}a_{i}^{\prime}\cdot b_{i}^{\prime}italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT := βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT. Then iβˆ—β’(cβ€²)=csuperscript𝑖superscript𝑐′𝑐i^{*}(c^{\prime})=citalic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_c and

⟨c,βˆ‚Ξ”I⟩=⟨iβˆ—β’(cβ€²),βˆ‚Ξ”I⟩=⟨cβ€²,iβˆ—β’(βˆ‚Ξ”I)⟩=0.𝑐subscriptΔ𝐼superscript𝑖superscript𝑐′subscriptΔ𝐼superscript𝑐′subscript𝑖subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle=\langle i^{*}(c^{\prime}),\partial\Delta_{%I}\rangle=\langle c^{\prime},i_{*}(\partial\Delta_{I})\rangle=0.⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_i start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_c start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_i start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT ( βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) ⟩ = 0 .

This is a contradiction.∎

Theorem 4.2.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a three-dimensional simplicial sphere such that π’¦β‰ βˆ‚Ξ”4𝒦superscriptΞ”4\mathcal{K}\neq\partial\Delta^{4}caligraphic_K β‰  βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph. Then Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝒦superscript𝐻𝑀H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ), where M𝑀Mitalic_M is a connected sum of products of spheres with two spheres in each product.

Proof..

We use the notation β„‹βˆ—,βˆ—=Hβˆ—β’(𝒡𝒦)superscriptβ„‹superscript𝐻subscript𝒡𝒦\mathcal{H}^{*,*}=H^{*}(\mathcal{Z}_{\mathcal{K}})caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT = italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) and analyse possible nontrivial products in(2.1). We have β„‹k,βˆ—=0superscriptβ„‹π‘˜0\mathcal{H}^{k,*}=0caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT = 0 for kβ‰₯4π‘˜4k\geq 4italic_k β‰₯ 4 since 𝒦𝒦\mathcal{K}caligraphic_K is a three-dimensional sphere.Products of the form β„‹3,βˆ—βŠ—β„‹i,βˆ—β†’β„‹4+i,βˆ—β†’tensor-productsuperscriptβ„‹3superscriptℋ𝑖superscriptβ„‹4𝑖\mathcal{H}^{3,*}\otimes\mathcal{H}^{i,*}\to\mathcal{H}^{4+i,*}caligraphic_H start_POSTSUPERSCRIPT 3 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT 4 + italic_i , βˆ— end_POSTSUPERSCRIPT, β„‹2,βˆ—βŠ—β„‹2,βˆ—β†’β„‹5,βˆ—β†’tensor-productsuperscriptβ„‹2superscriptβ„‹2superscriptβ„‹5\mathcal{H}^{2,*}\otimes\mathcal{H}^{2,*}\to\mathcal{H}^{5,*}caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT 5 , βˆ— end_POSTSUPERSCRIPT and β„‹2,βˆ—βŠ—β„‹1,βˆ—β†’β„‹4,βˆ—β†’tensor-productsuperscriptβ„‹2superscriptβ„‹1superscriptβ„‹4\mathcal{H}^{2,*}\otimes\mathcal{H}^{1,*}\to\mathcal{H}^{4,*}caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT 4 , βˆ— end_POSTSUPERSCRIPT are therefore trivial for dimensional reasons.

Since 𝒦𝒦\mathcal{K}caligraphic_K is a 3-dimensional sphere, 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is an (m+4)π‘š4(m+4)( italic_m + 4 )-dimensional manifold. Nontrivial products H~i⁒(𝒦I)βŠ—H~2βˆ’i⁒(𝒦J)β†’H~3⁒(𝒦IβˆͺJ)β†’tensor-productsuperscript~𝐻𝑖subscript𝒦𝐼superscript~𝐻2𝑖subscript𝒦𝐽superscript~𝐻3subscript𝒦𝐼𝐽\widetilde{H}^{i}(\mathcal{K}_{I})\otimes\widetilde{H}^{2-i}(\mathcal{K}_{J})%\to\widetilde{H}^{3}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) βŠ— over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 2 - italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) β†’ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) come from PoincarΓ© duality for𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT (see[BP, Proposition4.6.6]), because H~3⁒(𝒦IβˆͺJ)superscript~𝐻3subscript𝒦𝐼𝐽\widetilde{H}^{3}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) is nonzero only when IβŠ”J=[m]square-union𝐼𝐽delimited-[]π‘šI\sqcup J=[m]italic_I βŠ” italic_J = [ italic_m ]. The PoincarΓ© duality isomorphisms H~i⁒(𝒦I)β‰…H~2βˆ’i⁒(𝒦[m]βˆ–I)superscript~𝐻𝑖subscript𝒦𝐼subscript~𝐻2𝑖subscript𝒦delimited-[]π‘šπΌ\widetilde{H}^{i}(\mathcal{K}_{I})\cong\widetilde{H}_{2-i}(\mathcal{K}_{[m]%\setminus I})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) β‰… over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT 2 - italic_i end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– italic_I end_POSTSUBSCRIPT ) (or the Alexander duality isomorphisms for the 3333-sphere𝒦𝒦\mathcal{K}caligraphic_K, see[BP, 3.4.11]) imply that the groups H~i⁒(𝒦I)superscript~𝐻𝑖subscript𝒦𝐼\widetilde{H}^{i}(\mathcal{K}_{I})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) are torsion-free for any i𝑖iitalic_i and IβŠ‚[m]𝐼delimited-[]π‘šI\subset[m]italic_I βŠ‚ [ italic_m ].

Next we prove that all multiplications of the form β„‹0,βˆ—βŠ—β„‹0,βˆ—βŸΆβ„‹1,βˆ—βŸΆtensor-productsuperscriptβ„‹0superscriptβ„‹0superscriptβ„‹1\mathcal{H}^{0,*}\otimes\mathcal{H}^{0,*}\longrightarrow\mathcal{H}^{1,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT are trivial.Assume that there are cohom*ology classes a,bβˆˆβ„‹0,βˆ—π‘Žπ‘superscriptβ„‹0a,b\in\mathcal{H}^{0,*}italic_a , italic_b ∈ caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT such that 0β‰ aβ‹…b=:c∈H~1(𝒦I)0\neq a\cdot b=:c\in\widetilde{H}^{1}(\mathcal{K}_{I})0 β‰  italic_a β‹… italic_b = : italic_c ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ). Since cβ‰ 0𝑐0c\neq 0italic_c β‰  0 there exists γ∈H1⁒(𝒦I)𝛾subscript𝐻1subscript𝒦𝐼\gamma\in H_{1}(\mathcal{K}_{I})italic_Ξ³ ∈ italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) such that ⟨c,Ξ³βŸ©β‰ 0𝑐𝛾0\langle c,\gamma\rangle\neq 0⟨ italic_c , italic_Ξ³ ⟩ β‰  0. We can write Ξ³=Ξ»1⁒γ1+β‹―+Ξ»k⁒γk𝛾subscriptπœ†1subscript𝛾1β‹―subscriptπœ†π‘˜subscriptπ›Ύπ‘˜\gamma=\lambda_{1}\gamma_{1}+\cdots+\lambda_{k}\gamma_{k}italic_Ξ³ = italic_Ξ» start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ³ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + β‹― + italic_Ξ» start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_Ξ³ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, where each Ξ³isubscript𝛾𝑖\gamma_{i}italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a simple chordless cycle in 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and Ξ»iβ‰ 0subscriptπœ†π‘–0\lambda_{i}\neq 0italic_Ξ» start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‰  0. Since 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is chordal, Ξ³i∈missingM⁒F2⁒(𝒦)subscript𝛾𝑖missing𝑀subscript𝐹2𝒦\gamma_{i}\in\mathop{\mathrm{missing}}{MF}_{2}(\mathcal{K})italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( caligraphic_K ). Now, 0β‰ βŸ¨c,γ⟩=βˆ‘j=1kΞ»i⁒⟨c,Ξ³i⟩0𝑐𝛾superscriptsubscript𝑗1π‘˜subscriptπœ†π‘–π‘subscript𝛾𝑖0\neq\langle c,\gamma\rangle=\sum_{j=1}^{k}\lambda_{i}\langle c,\gamma_{i}\rangle0 β‰  ⟨ italic_c , italic_Ξ³ ⟩ = βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_Ξ» start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟨ italic_c , italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟩, so ⟨c,Ξ³iβŸ©β‰ 0𝑐subscript𝛾𝑖0\langle c,\gamma_{i}\rangle\neq 0⟨ italic_c , italic_Ξ³ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟩ β‰  0 for somei𝑖iitalic_i. Hence, c𝑐citalic_c is indecomposable by Lemma4.1. A contradiction.

Finally, we prove that all multiplications of the form β„‹0,βˆ—βŠ—β„‹1,βˆ—βŸΆβ„‹2,βˆ—βŸΆtensor-productsuperscriptβ„‹0superscriptβ„‹1superscriptβ„‹2\mathcal{H}^{0,*}\otimes\mathcal{H}^{1,*}\longrightarrow\mathcal{H}^{2,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT are trivial.Assume that there exists a nontrivial product a0β‹…b1=c2β‰ 0β‹…superscriptπ‘Ž0superscript𝑏1superscript𝑐20a^{0}\cdot b^{1}=c^{2}\neq 0italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‰  0 for some a0∈H~0⁒(𝒦I)superscriptπ‘Ž0superscript~𝐻0subscript𝒦𝐼a^{0}\in\widetilde{H}^{0}(\mathcal{K}_{I})italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ), b1∈H~1⁒(KJ)superscript𝑏1superscript~𝐻1subscript𝐾𝐽b^{1}\in\widetilde{H}^{1}(K_{J})italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ), c2∈H~2⁒(𝒦IβˆͺJ)superscript𝑐2superscript~𝐻2subscript𝒦𝐼𝐽c^{2}\in\widetilde{H}^{2}(\mathcal{K}_{I\cup J})italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ). By PoincarΓ© duality there exists an element aβ€²βˆˆH~0⁒(𝒦[m]βˆ–(IβˆͺJ))superscriptπ‘Žβ€²superscript~𝐻0subscript𝒦delimited-[]π‘šπΌπ½a^{\prime}\in\widetilde{H}^{0}(\mathcal{K}_{[m]\setminus(I\cup J)})italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– ( italic_I βˆͺ italic_J ) end_POSTSUBSCRIPT ) such that 0β‰ aβ€²β‹…c2=aβ€²β‹…a0β‹…b1∈H~3⁒(𝒦)0β‹…superscriptπ‘Žβ€²superscript𝑐2β‹…superscriptπ‘Žβ€²superscriptπ‘Ž0superscript𝑏1superscript~𝐻3𝒦0\neq a^{\prime}\cdot c^{2}=a^{\prime}\cdot a^{0}\cdot b^{1}\in\widetilde{H}^{%3}(\mathcal{K})0 β‰  italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( caligraphic_K ). Then a0β‹…aβ€²β‰ 0β‹…superscriptπ‘Ž0superscriptπ‘Žβ€²0a^{0}\cdot a^{\prime}\neq 0italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT β‹… italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  0, so we obtain a nontrivial multiplication of the form β„‹0,βˆ—βŠ—β„‹0,βˆ—βŸΆβ„‹1,βˆ—βŸΆtensor-productsuperscriptβ„‹0superscriptβ„‹0superscriptβ„‹1\mathcal{H}^{0,*}\otimes\mathcal{H}^{0,*}\longrightarrow\mathcal{H}^{1,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT. A contradiction.

It follows that the only nontrivial multiplications in β„‹βˆ—,βˆ—β’(𝒦)superscriptℋ𝒦\mathcal{H}^{*,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) are

β„‹0,IβŠ—β„‹2,[m]βˆ–IβŸΆβ„‹3,[m]andβ„‹1,JβŠ—β„‹1,[m]βˆ–JβŸΆβ„‹3,[m],formulae-sequence⟢tensor-productsuperscriptβ„‹0𝐼superscriptβ„‹2delimited-[]π‘šπΌsuperscriptβ„‹3delimited-[]π‘šand⟢tensor-productsuperscriptβ„‹1𝐽superscriptβ„‹1delimited-[]π‘šπ½superscriptβ„‹3delimited-[]π‘š\mathcal{H}^{0,I}\otimes\mathcal{H}^{2,[m]\setminus I}\longrightarrow\mathcal{%H}^{3,[m]}\quad\text{and}\quad\mathcal{H}^{1,J}\otimes\mathcal{H}^{1,[m]%\setminus J}\longrightarrow\mathcal{H}^{3,[m]},caligraphic_H start_POSTSUPERSCRIPT 0 , italic_I end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 2 , [ italic_m ] βˆ– italic_I end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 3 , [ italic_m ] end_POSTSUPERSCRIPT and caligraphic_H start_POSTSUPERSCRIPT 1 , italic_J end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , [ italic_m ] βˆ– italic_J end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT 3 , [ italic_m ] end_POSTSUPERSCRIPT ,

which arise from PoincarΓ© duality. Therefore, the ring Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is free as an abelian group with β„€β„€\mathbb{Z}blackboard_Z-basis

{1,a10,…,ak0,a11,…,al1,b11,…,bl1,b12,…,bk2,c},1subscriptsuperscriptπ‘Ž01…subscriptsuperscriptπ‘Ž0π‘˜subscriptsuperscriptπ‘Ž11…subscriptsuperscriptπ‘Ž1𝑙subscriptsuperscript𝑏11…subscriptsuperscript𝑏1𝑙subscriptsuperscript𝑏21…subscriptsuperscript𝑏2π‘˜π‘\{1,a^{0}_{1},\ldots,a^{0}_{k},a^{1}_{1},\ldots,a^{1}_{l},b^{1}_{1},\ldots,b^{%1}_{l},b^{2}_{1},\ldots,b^{2}_{k},c\},{ 1 , italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_c } ,

where a10,…,ak0βˆˆβ„‹0,βˆ—subscriptsuperscriptπ‘Ž01…subscriptsuperscriptπ‘Ž0π‘˜superscriptβ„‹0a^{0}_{1},\ldots,a^{0}_{k}\in\mathcal{H}^{0,*}italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT, a11,…,al1,b11,…,bl1βˆˆβ„‹1,βˆ—subscriptsuperscriptπ‘Ž11…subscriptsuperscriptπ‘Ž1𝑙subscriptsuperscript𝑏11…subscriptsuperscript𝑏1𝑙superscriptβ„‹1a^{1}_{1},\ldots,a^{1}_{l},b^{1}_{1},\ldots,b^{1}_{l}\in\mathcal{H}^{1,*}italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT,b12,…,bk2βˆˆβ„‹2,βˆ—subscriptsuperscript𝑏21…subscriptsuperscript𝑏2π‘˜superscriptβ„‹2b^{2}_{1},\ldots,b^{2}_{k}\in\mathcal{H}^{2,*}italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 2 , βˆ— end_POSTSUPERSCRIPT, cβˆˆβ„‹3,m=Hm+3⁒(𝒡𝒦)𝑐superscriptβ„‹3π‘šsuperscriptπ»π‘š3subscript𝒡𝒦c\in\mathcal{H}^{3,m}=H^{m+3}(\mathcal{Z}_{\mathcal{K}})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT 3 , italic_m end_POSTSUPERSCRIPT = italic_H start_POSTSUPERSCRIPT italic_m + 3 end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is the fundamental class, and the product is given byai0β‹…bj2=Ξ΄i⁒j⁒cβ‹…subscriptsuperscriptπ‘Ž0𝑖subscriptsuperscript𝑏2𝑗subscript𝛿𝑖𝑗𝑐a^{0}_{i}\cdot b^{2}_{j}=\delta_{ij}citalic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_Ξ΄ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT italic_c and ap1β‹…bq1=Ξ΄p⁒q⁒cβ‹…subscriptsuperscriptπ‘Ž1𝑝subscriptsuperscript𝑏1π‘žsubscriptπ›Ώπ‘π‘žπ‘a^{1}_{p}\cdot b^{1}_{q}=\delta_{pq}citalic_a start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT β‹… italic_b start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = italic_Ξ΄ start_POSTSUBSCRIPT italic_p italic_q end_POSTSUBSCRIPT italic_c, where Ξ΄i⁒jsubscript𝛿𝑖𝑗\delta_{ij}italic_Ξ΄ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT is the Kronecker delta. At least one of the groups β„‹0,βˆ—superscriptβ„‹0\mathcal{H}^{0,*}caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT and β„‹1,βˆ—superscriptβ„‹1\mathcal{H}^{1,*}caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT is nonzero, as otherwise 𝒦=βˆ‚Ξ”4𝒦superscriptΞ”4\mathcal{K}=\partial\Delta^{4}caligraphic_K = βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and 𝒡𝒦≅S9subscript𝒡𝒦superscript𝑆9\mathcal{Z}_{\mathcal{K}}\cong S^{9}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT β‰… italic_S start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT. Then Hβˆ—β’(𝒡𝒦)=β„‹βˆ—,βˆ—superscript𝐻subscript𝒡𝒦superscriptβ„‹H^{*}(\mathcal{Z}_{\mathcal{K}})=\mathcal{H}^{*,*}italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) = caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT is isomorphic to the cohom*ology ring of a connected sum of products spheres with two spheres in each product.∎

For simplicial spheres 𝒦𝒦\mathcal{K}caligraphic_K of dimension >3absent3>3> 3, the condition that 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph does not imply that Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of spheres, as shown by Example2.9. The next result gives a sufficient condition in any dimension. We say that the group β„‹l,βˆ—β’(𝒦)superscriptℋ𝑙𝒦\mathcal{H}^{l,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is generated by missing faces of 𝒦𝒦\mathcal{K}caligraphic_K if for any nonzero cβˆˆβ„‹l,βˆ—β’(𝒦)𝑐superscriptℋ𝑙𝒦c\in\mathcal{H}^{l,*}(\mathcal{K})italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) there exists I∈missingM⁒Fl+1⁒(𝒦)𝐼missing𝑀subscript𝐹𝑙1𝒦I\in\mathop{\mathrm{missing}}{MF}_{l+1}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_l + 1 end_POSTSUBSCRIPT ( caligraphic_K ) such that ⟨c,βˆ‚Ξ”IβŸ©β‰ 0𝑐subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle\neq 0⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ β‰  0.

Theorem 4.3.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a simplicial sphere of dimension d𝑑ditalic_d such that π’¦β‰ βˆ‚Ξ”d+1𝒦superscriptΔ𝑑1\mathcal{K}\neq\partial\Delta^{d+1}caligraphic_K β‰  βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT italic_d + 1 end_POSTSUPERSCRIPT and the group β„‹l,βˆ—β’(𝒦)superscriptℋ𝑙𝒦\mathcal{H}^{l,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT italic_l , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) is generated by missing faces of 𝒦𝒦\mathcal{K}caligraphic_K for lβ‰€βŒŠ2⁒dβˆ’13βŒ‹π‘™2𝑑13l\leq\left\lfloor\frac{2d-1}{3}\right\rflooritalic_l ≀ ⌊ divide start_ARG 2 italic_d - 1 end_ARG start_ARG 3 end_ARG βŒ‹. Then Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres with two spheres in each product.

Proof..

We can assume that dβ‰₯2𝑑2d\geq 2italic_d β‰₯ 2, as otherwise 𝒦𝒦\mathcal{K}caligraphic_K is the boundary of polygon and the result follows from Theorem2.5.As in the proof of Theorem4.2, we analyse possible nontrivial products in(2.1).We denote q:=⌊2⁒dβˆ’13βŒ‹assignπ‘ž2𝑑13q:=\left\lfloor\frac{2d-1}{3}\right\rflooritalic_q := ⌊ divide start_ARG 2 italic_d - 1 end_ARG start_ARG 3 end_ARG βŒ‹.

We have β„‹k,βˆ—=0superscriptβ„‹π‘˜0\mathcal{H}^{k,*}=0caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT = 0 for k>dπ‘˜π‘‘k>ditalic_k > italic_d since 𝒦𝒦\mathcal{K}caligraphic_K is an d𝑑ditalic_d-dimensional sphere.Therefore, products of the form β„‹i,βˆ—βŠ—β„‹j,βˆ—β†’β„‹i+j+1,βˆ—β†’tensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\to\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT with i+jβ‰₯d𝑖𝑗𝑑i+j\geq ditalic_i + italic_j β‰₯ italic_d are trivial.

Nontrivial products or the form β„‹i,βˆ—βŠ—β„‹j,βˆ—β†’β„‹i+j+1,βˆ—β†’tensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\to\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT β†’ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT with i+j=dβˆ’1𝑖𝑗𝑑1i+j=d-1italic_i + italic_j = italic_d - 1 are given by H~i⁒(𝒦I)βŠ—H~dβˆ’1βˆ’i⁒(𝒦J)β†’H~d⁒(𝒦IβˆͺJ)β†’tensor-productsuperscript~𝐻𝑖subscript𝒦𝐼superscript~𝐻𝑑1𝑖subscript𝒦𝐽superscript~𝐻𝑑subscript𝒦𝐼𝐽\widetilde{H}^{i}(\mathcal{K}_{I})\otimes\widetilde{H}^{d-1-i}(\mathcal{K}_{J}%)\to\widetilde{H}^{d}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) βŠ— over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d - 1 - italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) β†’ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) and come from PoincarΓ© duality, because H~d⁒(𝒦IβˆͺJ)superscript~𝐻𝑑subscript𝒦𝐼𝐽\widetilde{H}^{d}(\mathcal{K}_{I\cup J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I βˆͺ italic_J end_POSTSUBSCRIPT ) is nonzero only when IβŠ”J=[m]square-union𝐼𝐽delimited-[]π‘šI\sqcup J=[m]italic_I βŠ” italic_J = [ italic_m ].We prove by contradiction that the groups H~i⁒(𝒦I)superscript~𝐻𝑖subscript𝒦𝐼\widetilde{H}^{i}(\mathcal{K}_{I})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) are torsion-free for i≀qπ‘–π‘ži\leq qitalic_i ≀ italic_q. Assume that there is a cocycle 0β‰ cβˆˆβ„‹i,βˆ—β’(𝒦)0𝑐superscriptℋ𝑖𝒦0\neq c\in\mathcal{H}^{i,*}(\mathcal{K})0 β‰  italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) and a nonzero integer kπ‘˜kitalic_k such that kβ‹…c=0β‹…π‘˜π‘0k\cdot c=0italic_k β‹… italic_c = 0. Let c~~𝑐\tilde{c}over~ start_ARG italic_c end_ARG be a representing cochain for c𝑐citalic_c, then kβ‹…c~β‹…π‘˜~𝑐k\cdot\tilde{c}italic_k β‹… over~ start_ARG italic_c end_ARG is a coboundary and kβ‹…c~=d⁒b~β‹…π‘˜~𝑐𝑑~𝑏k\cdot\tilde{c}=d\tilde{b}italic_k β‹… over~ start_ARG italic_c end_ARG = italic_d over~ start_ARG italic_b end_ARG for some cochain b~~𝑏\tilde{b}over~ start_ARG italic_b end_ARG. By assumption there exists I∈missingM⁒Fi+1⁒(𝒦)𝐼missing𝑀subscript𝐹𝑖1𝒦I\in\mathop{\mathrm{missing}}{MF}_{i+1}(\mathcal{K})italic_I ∈ roman_missing italic_M italic_F start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT ( caligraphic_K ) such that ⟨c,βˆ‚Ξ”IβŸ©β‰ 0𝑐subscriptΔ𝐼0\langle c,\partial\Delta_{I}\rangle\neq 0⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ β‰  0, hence,

0β‰ kβ‹…βŸ¨c,βˆ‚Ξ”I⟩=⟨kβ‹…c~,βˆ‚Ξ”I⟩=⟨d⁒b~,βˆ‚Ξ”I⟩=⟨b~,βˆ‚(βˆ‚Ξ”I)⟩=00β‹…π‘˜π‘subscriptΞ”πΌβ‹…π‘˜~𝑐subscriptΔ𝐼𝑑~𝑏subscriptΔ𝐼~𝑏subscriptΔ𝐼00\neq k\cdot\langle c,\partial\Delta_{I}\rangle=\langle k\cdot\tilde{c},%\partial\Delta_{I}\rangle=\langle d\tilde{b},\partial\Delta_{I}\rangle=\langle%\tilde{b},\partial(\partial\Delta_{I})\rangle=00 β‰  italic_k β‹… ⟨ italic_c , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_k β‹… over~ start_ARG italic_c end_ARG , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ italic_d over~ start_ARG italic_b end_ARG , βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ⟩ = ⟨ over~ start_ARG italic_b end_ARG , βˆ‚ ( βˆ‚ roman_Ξ” start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) ⟩ = 0

and we get a contradiction. Now the Alexander duality isomorphisms H~i⁒(𝒦J)β‰…H~dβˆ’1βˆ’i⁒(𝒦[m]βˆ–J)superscript~𝐻𝑖subscript𝒦𝐽subscript~𝐻𝑑1𝑖subscript𝒦delimited-[]π‘šπ½\widetilde{H}^{i}(\mathcal{K}_{J})\cong\widetilde{H}_{d-1-i}(\mathcal{K}_{[m]%\setminus J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) β‰… over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_d - 1 - italic_i end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– italic_J end_POSTSUBSCRIPT ) imply that the hom*ology groups H~j⁒(𝒦J)subscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}_{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) are torsion-free for jβ‰₯dβˆ’1βˆ’q𝑗𝑑1π‘žj\geq d-1-qitalic_j β‰₯ italic_d - 1 - italic_q. Since dβˆ’1βˆ’q≀q𝑑1π‘žπ‘žd-1-q\leq qitalic_d - 1 - italic_q ≀ italic_q, we obtain that H~j⁒(𝒦J)subscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}_{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) is torsion-free for jβ‰₯qπ‘—π‘žj\geq qitalic_j β‰₯ italic_q, whereas H~j⁒(𝒦J)superscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}^{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) is torsion-free for j≀qπ‘—π‘žj\leq qitalic_j ≀ italic_q. By the universal coefficient theorem we conclude that the groups H~j⁒(𝒦J)superscript~𝐻𝑗subscript𝒦𝐽\widetilde{H}^{j}(\mathcal{K}_{J})over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) are torsion-free for all j𝑗jitalic_j andJ𝐽Jitalic_J.

All products of the form β„‹i,βˆ—βŠ—β„‹j,βˆ—βŸΆβ„‹i+j+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\longrightarrow\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT are trivial for i+j<qπ‘–π‘—π‘ži+j<qitalic_i + italic_j < italic_q, since any l𝑙litalic_l-dimensional cohom*ology class with l≀qπ‘™π‘žl\leq qitalic_l ≀ italic_q is indecomposable by Lemma4.1.

Finally, we prove that all products of the form β„‹i,βˆ—βŠ—β„‹j,βˆ—βŸΆβ„‹i+j+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptℋ𝑗superscriptℋ𝑖𝑗1\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\longrightarrow\mathcal{H}^{i+j+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_j , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , βˆ— end_POSTSUPERSCRIPT are trivial for q≀i+j≀dβˆ’2π‘žπ‘–π‘—π‘‘2q\leq i+j\leq d-2italic_q ≀ italic_i + italic_j ≀ italic_d - 2. Suppose there are classes aβˆˆβ„‹i,Iπ‘Žsuperscriptℋ𝑖𝐼a\in\mathcal{H}^{i,I}italic_a ∈ caligraphic_H start_POSTSUPERSCRIPT italic_i , italic_I end_POSTSUPERSCRIPT and bβˆˆβ„‹j,J𝑏superscriptℋ𝑗𝐽b\in\mathcal{H}^{j,J}italic_b ∈ caligraphic_H start_POSTSUPERSCRIPT italic_j , italic_J end_POSTSUPERSCRIPT with q≀i+j≀dβˆ’2π‘žπ‘–π‘—π‘‘2q\leq i+j\leq d-2italic_q ≀ italic_i + italic_j ≀ italic_d - 2 such that 0β‰ aβ‹…b=:cβˆˆβ„‹i+j+1,IβˆͺJ0\neq a\cdot b=:c\in\mathcal{H}^{i+j+1,I\cup J}0 β‰  italic_a β‹… italic_b = : italic_c ∈ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_j + 1 , italic_I βˆͺ italic_J end_POSTSUPERSCRIPT. Without loss of generality we assume that i≀j𝑖𝑗i\leq jitalic_i ≀ italic_j. Then there exists an element aβ€²βˆˆH~dβˆ’iβˆ’jβˆ’2⁒(𝒦[m]βˆ–(IβˆͺJ))superscriptπ‘Žβ€²superscript~𝐻𝑑𝑖𝑗2subscript𝒦delimited-[]π‘šπΌπ½a^{\prime}\in\widetilde{H}^{d-i-j-2}(\mathcal{K}_{[m]\setminus(I\cup J)})italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d - italic_i - italic_j - 2 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT [ italic_m ] βˆ– ( italic_I βˆͺ italic_J ) end_POSTSUBSCRIPT ) such that 0β‰ aβ€²β‹…c=aβ€²β‹…aβ‹…b∈H~d⁒(𝒦)0β‹…superscriptπ‘Žβ€²π‘β‹…superscriptπ‘Žβ€²π‘Žπ‘superscript~𝐻𝑑𝒦0\neq a^{\prime}\cdot c=a^{\prime}\cdot a\cdot b\in\widetilde{H}^{d}(\mathcal{%K})0 β‰  italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_c = italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_a β‹… italic_b ∈ over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( caligraphic_K ) by PoincarΓ© duality. Therefore, aβ‹…aβ€²β‰ 0β‹…π‘Žsuperscriptπ‘Žβ€²0a\cdot a^{\prime}\neq 0italic_a β‹… italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  0 and so we obtain a nontrivial product of the form β„‹i,βˆ—βŠ—β„‹k,βˆ—βŸΆβ„‹i+k+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptβ„‹π‘˜superscriptβ„‹π‘–π‘˜1\mathcal{H}^{i,*}\otimes\mathcal{H}^{k,*}\longrightarrow\mathcal{H}^{i+k+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_k + 1 , βˆ— end_POSTSUPERSCRIPT for k=dβˆ’iβˆ’jβˆ’2π‘˜π‘‘π‘–π‘—2k=d-i-j-2italic_k = italic_d - italic_i - italic_j - 2. By assumption, q≀i+j≀2⁒jπ‘žπ‘–π‘—2𝑗q\leq i+j\leq 2jitalic_q ≀ italic_i + italic_j ≀ 2 italic_j and q>2⁒dβˆ’13βˆ’1π‘ž2𝑑131q>\frac{2d-1}{3}-1italic_q > divide start_ARG 2 italic_d - 1 end_ARG start_ARG 3 end_ARG - 1, hence,

i+k=dβˆ’jβˆ’2≀dβˆ’2βˆ’q2<q.π‘–π‘˜π‘‘π‘—2𝑑2π‘ž2π‘ži+k=d-j-2\leq d-2-\frac{q}{2}<q.italic_i + italic_k = italic_d - italic_j - 2 ≀ italic_d - 2 - divide start_ARG italic_q end_ARG start_ARG 2 end_ARG < italic_q .

Thus, aβ€²β‹…aβ‹…superscriptπ‘Žβ€²π‘Ža^{\prime}\cdot aitalic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‹… italic_a is a product of the form β„‹i,βˆ—βŠ—β„‹k,βˆ—βŸΆβ„‹i+k+1,βˆ—βŸΆtensor-productsuperscriptℋ𝑖superscriptβ„‹π‘˜superscriptβ„‹π‘–π‘˜1\mathcal{H}^{i,*}\otimes\mathcal{H}^{k,*}\longrightarrow\mathcal{H}^{i+k+1,*}caligraphic_H start_POSTSUPERSCRIPT italic_i , βˆ— end_POSTSUPERSCRIPT βŠ— caligraphic_H start_POSTSUPERSCRIPT italic_k , βˆ— end_POSTSUPERSCRIPT ⟢ caligraphic_H start_POSTSUPERSCRIPT italic_i + italic_k + 1 , βˆ— end_POSTSUPERSCRIPT with i+k<qπ‘–π‘˜π‘ži+k<qitalic_i + italic_k < italic_q, so it must be trivial. A contradiction.

We obtain that the only nontrivial products in β„‹βˆ—,βˆ—β’(𝒦)superscriptℋ𝒦\mathcal{H}^{*,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT βˆ— , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) arise from PoincarΓ© duality. It follows that the ring Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres with two spheres in each product.∎

The next theorem extends the result of Theorem4.2 to a complete characterisation of three-dimensional spheres 𝒦𝒦\mathcal{K}caligraphic_K such that Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres.

Theorem 4.4.

Let 𝒦𝒦\mathcal{K}caligraphic_K be a three-dimensional simplicial sphere. Then Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres if and only if one of the following conditions is satisfied:

  • (a)

    𝒦=S0βˆ—S0βˆ—S0βˆ—S0𝒦superscript𝑆0superscript𝑆0superscript𝑆0superscript𝑆0\mathcal{K}=S^{0}*S^{0}*S^{0}*S^{0}caligraphic_K = italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT βˆ— italic_S start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT (the boundary of a 4444-dimensional cross-polytope);

  • (b)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph;

  • (c)

    𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT has exactly two missing edges which form a chordless 4444-cycle.

Proof..

First we prove the β€œonly if” statement. If 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph, then (b) is satisfied. Otherwise, by Lemma2.10 the missing edges I1,…,Irsubscript𝐼1…subscriptπΌπ‘ŸI_{1},\ldots,I_{r}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT of 𝒦𝒦\mathcal{K}caligraphic_K are pairwise disjoint and 𝒦I1βŠ”β‹―βŠ”Ir=𝒦I1βˆ—β‹―βˆ—π’¦Irsubscript𝒦square-unionsubscript𝐼1β‹―subscriptπΌπ‘Ÿsubscript𝒦subscript𝐼1β‹―subscript𝒦subscriptπΌπ‘Ÿ\mathcal{K}_{I_{1}\sqcup\cdots\sqcup I_{r}}=\mathcal{K}_{I_{1}}*\cdots*%\mathcal{K}_{I_{r}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” β‹― βŠ” italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT. We have r≀4π‘Ÿ4r\leq 4italic_r ≀ 4, since dim𝒦=3dimension𝒦3\dim\mathcal{K}=3roman_dim caligraphic_K = 3.

If r=4π‘Ÿ4r=4italic_r = 4, then 𝒦=𝒦I1βˆ—β‹―βˆ—π’¦I4𝒦subscript𝒦subscript𝐼1β‹―subscript𝒦subscript𝐼4\mathcal{K}=\mathcal{K}_{I_{1}}*\cdots*\mathcal{K}_{I_{4}}caligraphic_K = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— β‹― βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, so that (a) holds.

If r=3π‘Ÿ3r=3italic_r = 3, then 𝒦I1βŠ”I2βŠ”I3=𝒦I1βˆ—π’¦I2βˆ—π’¦I3subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3subscript𝒦subscript𝐼1subscript𝒦subscript𝐼2subscript𝒦subscript𝐼3\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{3}}=\mathcal{K}_{I_{1}}*\mathcal{K}_{I%_{2}}*\mathcal{K}_{I_{3}}caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT βˆ— caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is a two-dimensional simplicial sphere. We have H~0⁒(π’¦βˆ–π’¦I1βŠ”I2βŠ”I3)β‰…H~2⁒(𝒦I1βŠ”I2βŠ”I3)β‰…β„€subscript~𝐻0𝒦subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3superscript~𝐻2subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3β„€\widetilde{H}_{0}(\mathcal{K}\setminus\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{%3}})\cong\widetilde{H}^{2}(\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{3}})\cong%\mathbb{Z}over~ start_ARG italic_H end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( caligraphic_K βˆ– caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) β‰… over~ start_ARG italic_H end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) β‰… blackboard_Z by Alexander duality. Hence, π’¦βˆ–π’¦I1βŠ”I2βŠ”I3𝒦subscript𝒦square-unionsubscript𝐼1subscript𝐼2subscript𝐼3\mathcal{K}\setminus\mathcal{K}_{I_{1}\sqcup I_{2}\sqcup I_{3}}caligraphic_K βˆ– caligraphic_K start_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ” italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is not connected. It follows that there is at least one more missing edge in 𝒦𝒦\mathcal{K}caligraphic_K besides I1,I2,I3subscript𝐼1subscript𝐼2subscript𝐼3I_{1},I_{2},I_{3}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. A contradiction.

If r=2π‘Ÿ2r=2italic_r = 2, then (c) holds.

If r=1π‘Ÿ1r=1italic_r = 1, then 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is in fact a chordal graph, since any chordless cycle with more than three vertices has at least two missing edges. Hence, (b) holds.

Now we prove the β€œif” statement. If (a) holds, then 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is a product of spheres. If (b) holds, then Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M1⁒#⁒⋯⁒#⁒Mk)superscript𝐻subscript𝒡𝒦superscript𝐻subscript𝑀1#β‹―#subscriptπ‘€π‘˜H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M_{1}\#\cdots\#M_{k})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT # β‹― # italic_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where each Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a product of spheres by Theorem4.2. Suppose (c) holds. Then β„‹0,βˆ—β’(𝒦)=β„€β’βŸ¨a1,a2⟩superscriptβ„‹0𝒦℀subscriptπ‘Ž1subscriptπ‘Ž2\mathcal{H}^{0,*}(\mathcal{K})=\mathbb{Z}\langle a_{1},a_{2}\ranglecaligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) = blackboard_Z ⟨ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩, where a1subscriptπ‘Ž1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and a2subscriptπ‘Ž2a_{2}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT correspond to the two missing edges of 𝒦𝒦\mathcal{K}caligraphic_K, and a1β‹…a2β‰ 0β‹…subscriptπ‘Ž1subscriptπ‘Ž20a_{1}\cdot a_{2}\neq 0italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‰  0. We use the same argument as in the proof of Theorem4.2 with one exception: there is one nontrivial product of the form β„‹0,βˆ—β’(𝒦)βŠ—β„‹0,βˆ—β’(𝒦)βŠ—β„‹1,βˆ—β’(𝒦)βŸΆβ„‹3,βˆ—β’(𝒦)⟢tensor-producttensor-productsuperscriptβ„‹0𝒦superscriptβ„‹0𝒦superscriptβ„‹1𝒦superscriptβ„‹3𝒦\mathcal{H}^{0,*}(\mathcal{K})\otimes\mathcal{H}^{0,*}(\mathcal{K})\otimes%\mathcal{H}^{1,*}(\mathcal{K})\longrightarrow\mathcal{H}^{3,*}(\mathcal{K})caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) βŠ— caligraphic_H start_POSTSUPERSCRIPT 0 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) βŠ— caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ) ⟢ caligraphic_H start_POSTSUPERSCRIPT 3 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ). Namely, a1β‹…a2β‹…b↦cmaps-toβ‹…subscriptπ‘Ž1subscriptπ‘Ž2𝑏𝑐a_{1}\cdot a_{2}\cdot b\mapsto citalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹… italic_b ↦ italic_c, where b𝑏bitalic_b is PoincarΓ© dual to a1β‹…a2β‹…subscriptπ‘Ž1subscriptπ‘Ž2a_{1}\cdot a_{2}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and c𝑐citalic_c is the fundamental class of𝒦𝒦\mathcal{K}caligraphic_K. All other nontrivial products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) arise from PoincarΓ© duality. Thus the ring Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is generated by elements {a1,a2,b,c,xi,yi:i=1,2,…,N}conditional-setsubscriptπ‘Ž1subscriptπ‘Ž2𝑏𝑐subscriptπ‘₯𝑖subscript𝑦𝑖𝑖12…𝑁\{a_{1},a_{2},b,c,x_{i},y_{i}\colon i=1,2,\ldots,N\}{ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_b , italic_c , italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : italic_i = 1 , 2 , … , italic_N }, where xi,yiβˆˆβ„‹1,βˆ—β’(𝒦)subscriptπ‘₯𝑖subscript𝑦𝑖superscriptβ„‹1𝒦x_{i},y_{i}\in\mathcal{H}^{1,*}(\mathcal{K})italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ caligraphic_H start_POSTSUPERSCRIPT 1 , βˆ— end_POSTSUPERSCRIPT ( caligraphic_K ), with the following multiplication rules: a1β‹…a2β‹…b=cβ‹…subscriptπ‘Ž1subscriptπ‘Ž2𝑏𝑐a_{1}\cdot a_{2}\cdot b=citalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‹… italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹… italic_b = italic_c, xiβ‹…yi=cβ‹…subscriptπ‘₯𝑖subscript𝑦𝑖𝑐x_{i}\cdot y_{i}=citalic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT β‹… italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_c for i=1,2,…,N𝑖12…𝑁i=1,2,\ldots,Nitalic_i = 1 , 2 , … , italic_N, and all other products of generators are zero. Clearly, Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) is isomorphic to the cohom*ology ring of a connected sum of products of spheres.∎

Remark.

Note that under condition (c) of Theorem4.4 we have Hβˆ—β’(𝒡𝒦)β‰…Hβˆ—β’(M)superscript𝐻subscript𝒡𝒦superscript𝐻𝑀H^{*}(\mathcal{Z}_{\mathcal{K}})\cong H^{*}(M)italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) β‰… italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_M ), where M𝑀Mitalic_M is a connected sum of products of spheres in which one of the summands is a product of three spheres. The first example of such a simplicial sphere 𝒦𝒦\mathcal{K}caligraphic_K was constructed in[FCMW]. Later it was shown in[I] that the corresponding moment-angle manifold 𝒡𝒦subscript𝒡𝒦\mathcal{Z}_{\mathcal{K}}caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT is diffeomorphic toM𝑀Mitalic_M.

Remark.

It can be shown that if 𝒦𝒦\mathcal{K}caligraphic_K is a three-dimensional simplicial sphere such that 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph, then all higher Massey products in Hβˆ—β’(𝒡𝒦)superscript𝐻subscript𝒡𝒦H^{*}(\mathcal{Z}_{\mathcal{K}})italic_H start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( caligraphic_Z start_POSTSUBSCRIPT caligraphic_K end_POSTSUBSCRIPT ) are trivial. This implies that a three-dimensional simplicial sphere π’¦β‰ βˆ‚Ξ”4𝒦superscriptΞ”4\mathcal{K}\neq\partial\Delta^{4}caligraphic_K β‰  βˆ‚ roman_Ξ” start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT is minimally non-Golod if and only if 𝒦1superscript𝒦1\mathcal{K}^{1}caligraphic_K start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is a chordal graph. We elaborate on this in a subsequent paper.

References

  • [BM]Bosio, FrΓ©dΓ©ric; Meersseman, Laurent.Real quadrics in 𝐂nsuperscript𝐂𝑛\mathbf{C}^{n}bold_C start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, complex manifolds and convex polytopes. Acta Math. 197 (2006), no.1, 53–127.
  • [BE]Buchstaber, Victor; Erokhovets, Nikolay.Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes. Izv. Ross. Akad. Nauk Ser. Mat.81(2017), no.5, 15–91 (Russian).Izvestiya: Mathematics81 (2017), no.5, 901-972 (English translation).
  • [BP]Buchstaber, Victor; Panov, Taras.Toric Topology.Math. Surveys Monogr.,204,Amer. Math. Soc., Providence, RI, 2015.
  • [FCMW]Fan, Feifei Fan; Chen, Liman; Ma, Jun; Wang, Xiangjun.Moment-angle manifolds and connected sums of sphere products.Osaka J. Math.53 (2016), no.1, 31–45.
  • [FG]Fulkerson, Delbert; Gross, Oliver.Incidence matrices and interval graphs.Pacific J. Math15, no.3 (1965), 835–855.
  • [GL]Gitler, Samuel; LΓ³pez de Medrano, Santiago.Intersections of quadrics, moment-angle manifolds and connected sums. Geom. Topol.17 (2013), no.3, 1497–1534.
  • [I]Iriye, Kouyemon. On the moment-angle manifold constructed by Fan, Chen, Ma and Wang. Osaka J. Math.55 (2018), no.4, 587–593.
  • [L]Limonchenko, Ivan.Stanley–Reisner rings of generalized truncation polytopes and their moment-angle manifolds. Tr. Mat. Inst. Steklova286 (2014), 207–218 (Russian).Proc. Steklov Inst. Math.286 (2014), no.1, 188–197 (English translation).
  • [M]McGavran, Dennis.Adjacent connected sums and torus actions. Trans. Amer. Math. Soc.251 (1979), 235–254.
Moment-angle manifolds corresponding to three-dimensional simplicial spheres, chordality and connected sums of products of spheres (2024)
Top Articles
Declan Rice Next Club Odds: Club Transfer RecordΒ 
Declan Rice Next Club Odds: West Ham midfielder now ODDS-ON at 10/11 to join Arsenal this Summer with the Gunners reportedly interested!
Strange World Showtimes Near Amc Brazos Mall 14
Jody Plauche Wiki
Fnv Mr Cuddles
Memphis Beauty 2084
Restaurants Near Defy Trampoline Park
Mets Game Highlights
On Trigger Enter Unity
Wgu Academy Phone Number
Allegra Commercial Actress 2022
Rimworld Prison Break
Tinyzonetv.to Unblocked
Nyu Paralegal Program
Rhiel Funeral Durand
Okay Backhouse Mike Lyrics
Waitlistcheck Sign Up
Tethrd Coupon Code The Hunting Public
10425 Reisterstown Rd
Omaha Steaks Molten Lava Cake Instructions
Vegamovies Marathi
Twitter claims there’s β€œno evidence” 200 million leaked usernames and email addresses came from an exploit of its systems
Oh The Pawsibilities Salon & Stay Plano
25+ Twitter Header Templates & Design Tips - Venngage
R Toronto Blue Jays
Milwaukee Nickname Crossword Clue
Lil Coffea Shop 6Th Ave Photos
ΠŸΡ€ΠΎΠΈΠ·Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΈ транскрипция английских слов ΠΎΠ½Π»Π°ΠΉΠ½.
Qcp Lpsg
Acnh Picnic Table
Wo liegt Sendenhorst? Lageplan und Karte
Phasmophobia Do As I Command Challenge
Slim Thug’s Wealth and Wellness: A Journey Beyond Music
Grand Forks (British Columbia) – Travel guide at Wikivoyage
Vernon Autoplex
Warrior Badge Ability Wars
Craigslist Pinellas County Rentals
Smarthistory – Leonardo da Vinci, β€œVitruvian Man”
Scarabaeidae), with a key to related species – Revista Mexicana de Biodiversidad
Rage Of Harrogath Bugged
Limestone Bank Hillview
Congdon Heart And Vascular Center
Z93 Local News Monticello Ky
Incident Manager (POS & Kiosk) job in Chicago, IL with McDonald's - Corporate
4225 Eckersley Way Roseville Ca
Green Press Gazette Obits
4Myhr Mhub
Busted Newspaper Lynchburg County VA Mugshots
Akc Eo Tryouts 2022
Transportationco.logisticare
C Weather London
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 6303

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.